ObjectThe authors describe a method for percutaneous transplantation of human umbilical cord blood (hUCB)–derived multipotent stem cells (MSCs) under fluoroscopic guidance. The investigators then tested whether percutaneous transplantation of hUCB-derived MSCs improved neurological functional recovery after acute spinal cord injury (SCI).MethodsThe authors induced SCI in 10 dogs by percutaneous balloon compression. The 10 injured dogs were assigned randomly to the following groups (2 dogs each): Group 1, evaluated 2 weeks after sham transplantation; Group 2, evaluated 2 weeks after transplantation; Group 3, evaluated 4 weeks after sham transplantation; Group 4, evaluated 4 weeks after transplantation; and Group 5, evaluated 4 weeks after multispot transplantations. The dogs with sham transplantation (Groups 1 and 3) received the same volume of saline, as a control. A spinal needle was advanced into the spinal canal, and the investigators confirmed that the end of the spinal needle was located in the ventral part of spinal cord parenchyma by using contrast medium under fluoroscopic guidance. The hUCB-derived MSCs were transplanted into the cranial end of the injured segment in 6 injured dogs at 7 days after SCI.ResultsTwo dogs in Group 2 showed no improvement until 2 weeks after transplantation. Three of 4 dogs (Groups 4 and 5) that received cellular transplants exhibited gradual improvement in hindlimb locomotion from 3 weeks after cell transplantation. The CM-DiI–labeled hUCB-derived MSCs were observed in the spinal cord lesions at 4 weeks posttransplantation and exerted a significant beneficial effect by reducing cyst and injury size. The transplanted cells were positive for NeuN, glial fibrillary acidic protein, and von Willebrand factor.ConclusionsThe percutaneous transplantation technique described here can be easily performed, and it differs from previous techniques by avoiding surgical exposure and allowing cells to be more precisely transplanted into the spinal cord. This technique has many potential applications in the treatment of human SCI by cell transplantation. The results also suggest that transplantation of hUCB-derived MSCs may have therapeutic effects that decrease cavitation for acute SCI.
ABSTRACT. A 4-year-old, neutered male Maltese presented with a 2-month history of right hemiparesis. The radiographic findings revealed bone lysis, and sclerotic changes in the right section of the fifth and sixth cervical bones with a mild radiolucent mass around the lesion. The magnetic resonance imaging revealed a hyperintense mass located in the region extending from the muscles to the bones and compressing the spinal cord. The mass was removed via a hemilaminectomy in the cervical area using the ventral and dorsal approach, and a histological examination confirmed that it was adipose tissue. An infiltrative lipoma was diagnosed based on these findings. The dog has ambulated normally for 24 months since undergoing surgery. KEY WORDS: canine, infiltrative lipoma, spinal cord.
We induced percutaneous spinal cord injuries (SCI) using a balloon catheter in 45 rats and transplanted human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) at the injury site. Locomotor function was significantly improved in hUCB-MSCs transplanted groups. Quantitative ELISA of extract from entire injured spinal cord showed increased expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3). Our results show that treatment of SCI with hUCB-MSCs can improve locomotor functions, and suggest that increased levels of BDNF, NGF and NT-3 in the injured spinal cord were the main therapeutic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.