This study aims to develop an optimal signal control algorithm for signalized intersections using individual vehicle’s trajectory data under the vehicle-to-infrastructure (V2I) communication environment. The optimal signal control algorithm developed in this study consists of three modules, namely, a phase group length computation module, a split distribution module, and a phase sequence assignment module. A set of analyses using a microscopic simulation model, VISSIM, was conducted for evaluating the effectiveness of the V2I-based optimal signal control algorithm proposed in this study. The analysis results show that the performance of the V2I-based optimal signal control algorithm is superior to the actuated as well as the fixed signal control methods in an isolated intersection and a 2X3 signalized intersection network. In addition, this study investigated the minimum market penetration rate of V2I equipped vehicles for which the V2I-based optimal signal control algorithm is applicable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.