We have discovered a novel class of endothelin (ET) receptor antagonists through pharmacophore analysis of the existing non-peptide ET antagonists. On the basis of this analysis, we determined that a pyrrolidine ring might replace the indian ring in SB 209670. The resultant compounds were readily prepared and amenable to extensive SAR studies. Thus a series of N-substituted trans,trans-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)pyrroli din e-3- carboxylic acids (8) have been synthesized and evaluated for binding at ET(A) and ET(B) receptors. Compounds with N-acyl and simple N-alkyl substituents had weak activity. Compounds with N-alkyl substituents containing ethers, sulfoxides, or sulfones showed increased activity. Much improved activity resulted from compounds where the N-substituents were acetamides. Compound 17u (A-127722) with the N,N-dibutylacetamide substituent is the best of the series. It has an IC(50)=0.36 nM for inhibition of ET-1 radioligand binding at the ET(A) receptor, with a 1000-fold selectivity for the ET(A) vs the ET(B) receptor. It is also a potent inhibitor (IC(50)=0.16 nM) of phosphoinositol hydrolysis stimulated by ET-1, and it antagonized the ET-1-induced contraction of the rabbit aorta with a pA(2)=9.20. The compound has 70% oral bioavailability in rats.
Endothelins (ETs), 21-amino-acid peptides involved in the pathogenesis of various diseases, bind to ET(A) and ET(B) receptors to initiate their effects. Based on the same core structure, we have developed four small-molecule ET receptor antagonists, ABT-627 (atrasentan), ABT-546, A-182086 and A-192621, which exhibit differences in selectivity for ET(A) and ET(B) receptors. In this report, we compare the efficacy, potency and pharmacokinetic properties of these four antagonists, including potency in inhibiting ET-1- or Sarafotoxin 6c-induced vessel constriction in isolated arteries and efficacy in antagonizing ET-1-, big ET-1- or Sarafotoxin 6c-induced pressor responses in rats.
We have shown that p-arylthio cinnamides can inhibit the interaction of LFA-1 and ICAM-1, which is involved in cell adhesion and the inflammatory process. We now show that 2,3-disubstitution on the aryl portion of the cinnamide results in enhanced activity over mono substitution on the ring. The best 2,3-substituents were chlorine and trifluoromethyl groups. Compounds 39 and 40 which contain two CF3 groups have IC(50) values of 0.5 and 0.1 nM, respectively, in inhibiting JY8 cells expressing LFA-1 on their surface, from adhering to ICAM-1. The structure-activity relationship (SAR) was examined using an NMR based model of the LFA-1 I domain/compound 31 complex. One of our compounds (38) was able to reduce cell migration in two different in vivo experiments.
The synthesis and structure-activity relationships (SAR) of a series of pyrrolidine-3-carboxylic acids as endothelin antagonists are described. The data shows an increase in selectivity when the methoxy of Atrasentan (ABT-627) is replaced with methyl, and the benzodioxole is replaced with dihydrobenzofuran. Adding a fluorine further increases the binding activity and provides a metabolically stable and orally bioavailable ET(A)-selective antagonist.
When the N,N-dialkylacetamide side chain of the highly ETA-selective endothelin antagonist ABT-627 (1; [2R,3R,4S]-2-(4-methoxyphenyl)-4-(1,3-benzodioxol-5-yl)-1-[[N, N-dibutylamino)-carboxyl]methyl]pyrrolidine-3-carboxylic acid; A-147627) is replaced by N,S-dialkylsulfonamidoethyl, the resultant analogs retain ETA affinity, but exhibit substantial ETB affinity as well. Structure-activity studies reveal that modifications in the length of the two alkyl groups, and in the substitution on the anisyl ring, are important in optimizing this "balanced" antagonist profile. In particular the combination of an N-n-propyl group, an S-alkyl chain between four and six carbons in length, and a fluorine atom ortho to the aromatic OCH3 provides compounds with sub-nanomolar affinities for both receptor subtypes, and with ETA/ETB ratios close to 1. A number of these compounds also exhibit oral bioavailabilities (in rats) in the 30-50% range and have substantial plasma half-lives. The balanced receptor-binding profile of these potent and orally bioavailable compounds complements the ETA selectivity observed with 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.