Diamond nanoparticles have been synthesized using various methods. Nanodiamonds generated in the gas phase were captured on the membrane of a transmission electron microscope grid during a hot filament chemical vapor deposition (HFCVD) diamond process. In total, ~600 nanoparticles, which were captured for 10 s in six conditions of the capture temperatures of 900 °C, 600 °C and 300 °C and the gas mixtures of 1% CH4-99% H2 and 3% CH4-97% H2, were analyzed for phase identification using high-resolution transmission electron microscopy and fast Fourier transformation. Hexagonal diamond, i-carbon, n-diamond, and cubic diamond were identified. The observation of two or more carbon allotropes captured on the same membrane suggested their coexistence in the gas phase during HFCVD. The crystal structure of carbon allotropes was related to the size of the nanodiamond. The crystal structure of the nanoparticles affected the crystal structure of diamond deposited for 8 h. Confirmation of various carbon allotropes provides new insight into the nanodiamond synthesis in the gas phase and the growth mechanism of HFCVD diamond.
Although the growth rate of diamond increased with increasing methane concentration at the filament temperature of 2100 °C during a hot filament chemical vapor deposition (HFCVD), it decreased with increasing methane concentration from 1% CH4 –99% H2 to 3% CH4 –97% H2 at 1900 °C. We investigated this unusual dependence of the growth rate on the methane concentration, which might give insight into the growth mechanism of a diamond. One possibility would be that the high methane concentration increases the non-diamond phase, which is then etched faster by atomic hydrogen, resulting in a decrease in the growth rate with increasing methane concentration. At 3% CH4 –97% H2, the graphite was coated on the hot filament both at 1900 °C and 2100 °C. The graphite coating on the filament decreased the number of electrons emitted from the hot filament. The electron emission at 3% CH4 –97% H2 was 13 times less than that at 1% CH4 –99% H2 at the filament temperature of 1900 °C. The lower number of electrons at 3% CH4 –97% H2 was attributed to the formation of the non-diamond phase, which etched faster than diamond, resulting in a lower growth rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.