This experimental study sought to investigate the characteristics of the exhaust emissions, and nanoparticle size distribution of particulate matter (PM) emitted from diesel engines fueled with 20% biodiesel-diesel blended fuel (BD20). The study also investigated the conversion efficiency of the warm-up catalytic converter (WCC). The emission characteristics of HC, CO, NOx and nano-sized PM were also observed according to engine operating conditions with and without exhaust gas recirculation (EGR). The study revealed that the maximum torque achievable with the biodieseldiesel blended fuel was slightly lower than that achievable with neat diesel fuel at high-load conditions. Smoke was decreased by more than 20% in all 13 modes. While the CO and THC emissions of BD20 slightly decreased, the NOx emission of BD20 increased by 3.7%. Measured using the scanning mobility particle sizer (SMPS), the total number and total mass of the nanoparticles in the size range between 10.6nm and 385nm were reduced by about 10% and 25%, respectively, when going from D100 to BD20. The particle number and mass for both fuels were reduced by about 43% when going from with EGR to without EGR. When EGR was applied in the engine system, the particle number and mass were reduced by 24%, and 16%, respectively, when going from D100 to BD20.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.