Abstract:To increase the utilization of wind power in the power system, grid integration standards have been proposed for the stable integration of large-scale wind power plants. In particular, fault-ride-through capability, especially Low-Voltage-Ride-Through (LVRT), has been emphasized, as it is related to tripping in wind farms. Therefore, this paper proposes the Wind power plant applicable-Effective Reactive power Reserve (Wa-ERPR), which combines both wind power plants and conventional generators at the Point of Interconnection (POI). The reactive power capability of the doubly-fed induction generator wind farm was considered to compute the total Wa-ERPR at the POI with reactive power capability of existing generators. By using the Wa-ERPR management algorithm, in case of a violation of the LVRT standards, the amount of reactive power compensation is computed using the Wa-ERPR management scheme. The proposed scheme calculates the Wa-ERPR and computes the required reactive power, reflecting the change of the system topology pre-and post-contingency, to satisfy the LVRT criterion when LVRT regulation is not satisfied at the POI. The static synchronous compensator (STATCOM) with the capacity corresponding to calculated amount of reactive power through the Wa-ERPR management scheme is applied to the POI. Therefore, it is confirmed that the wind power plant satisfies the LVRT criteria by securing the appropriate reactive power at the POI, by applying of the proposed algorithm.
-For stable integration of large-scale wind farms, integration standards (Grid codes) have been proposed by the system operator. In particular, voltage control of large-scale wind farms is gradually becoming important because of the increasing size of individual wind farms. Among the various voltage control methods, Secondary Voltage Control (SVC) is a method that can control the reactive power reserve of a control area uniformly. This paper proposes hybrid SVC when a large-scale wind farm is integrated into the power grid. Using SVC, the burden of a wind turbine converter for generating reactive power can be reduced. To prove the effectiveness of the proposed strategy, a simulation study is carried out for the Jeju system. The proposed strategy can improve the voltage conditions and reactive power reserve with this hybrid SVC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.