This study proposes an acoustic theory that describes the resonance phenomena in a resonator made of acoustic composite right/left-handed (CRLH) metamaterials, and verifies it through numerical simulation. The established theory for a microwave CRLH metamaterial resonator is adapted to explain the resonance phenomena in an acoustic CRLH metamaterial resonator. In particular, attention is focused on the zeroth-order resonance phenomenon which has several interesting properties. When a resonator is composed of a CRLH metamaterial, a resonance with a flat acoustic field distribution may occur at one of the frequencies where the wavenumber becomes zero. This resonance is called zeroth-order resonance. Through numerical simulation, such unusual resonance phenomenon in acoustics is observed in more detail and the proposed theory is verified. The results of the theory and the numerical simulation clearly show that zeroth-order resonance can exist at those frequencies where the acoustic field distribution is flat due to infinite wavelength. It is also shown that the resonance frequency and the Q factor of this resonance depend on the boundary condition at both ends of the resonator, and they basically do not change even when the number of units is reduced or increased.
The simultaneous measurement of the acoustic pressure and the temperature at the focus of high intensity focused ultrasound (HIFU) in a tissuemimicking phantom were performed by using a dual sensing fiber-optic hydrophone (FOH). The HIFU pressure and the HIFU-induced temperature rise at the focus in the phantom were numerically simulated by using a MATLAB-based software package developed for HIFU simulation. The measurements of the HIFU-induced temperature rise showed good agreement with the simulations. It was also found that the presence of the FOH tip at the focus in the phantom did not affect the formation of a thermal lesion.
In this study, we experimentally and theoretically investigated acoustic band gap control with diffraction modes in two-dimensional (2D) phononic crystals (PCs) consisting of periodic arrays of stainless steel (SS) rods immersed in water. We could classify the acoustic band gaps into two types with diffraction modes in the reflection region, and control the center frequencies of the band gaps by varying the vertical lattice constants. Pressure transmission coefficients and acoustic pressure fields were calculated using the finite element method (FEM), to classify and control the acoustic band gaps. As the vertical lattice constants were varied, the center frequencies of the band gaps, where only normal reflection occurred, were almost constant while those of the band gaps, where additional reflected waves with different propagation directions occurred, decreased with increasing the vertical lattice constants. This work can be used to manipulate acoustic band gap adding, splitting, and shifting.
The present work reports a combined experimental and theoretical study on the acoustic band gaps in a two-dimensional (2D) phononic crystal (PC) consisting of periodic square arrays of stainless-steel cylinders with diameters of 1.0 mm and a lattice constant of 1.5 mm in water. The theoretical band structure of the 2D PC was calculated along the ΓX direction of the first Brillouin zone. The transmission and the reflection coefficients were obtained both experimentally and theoretically along the ΓX direction of the 2D PC. The 2D PC exhibited 5 band gaps at frequencies below 2.0 MHz, with the first Bragg gap being around a frequency of 0.5 MHz. To understand the band gaps in the 2D PC, we calculated the acoustic pressure fields at specific frequencies of interest for normal incidence, and we explained them from the perspective of acoustic diffraction gratings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.