The acetone extract of the roots of Rhodiola sachalinensis has furnished six phenolic compounds which exhibited significant scavenging effects against DPPH free radical. The structures of these compounds were identified and determined as gallic acid (1), (-)-epigallocatechin 3-O-gallate (2), kaempferol (3), kaempferol 7-O-alpha-L-rhamnopyranoside (4), herbacetin 7-O-alpha-L-rhamnopyranoside, (5) and rhodiolinin (6) by physico-chemical and spectral evidences.
We previously isolated the OsCBT gene, which encodes a calmodulin (CaM)-binding protein, from a rice expression library constructed from fungal elicitor-treated rice suspension cells. In order to understand the function of OsCBT in rice, we isolated and characterized a T-DNA insertion mutant allele named oscbt-1. The oscbt-1 mutant exhibits reduced levels of OsCBT transcripts and no significant morphological changes compared to wild-type plant although the growth of the mutant is stunted. However, oscbt-1 mutants showed significant resistance to two major rice pathogens. The growth of the rice blast fungus Magnaporthe grisea, as well as the bacterial pathogen Xanthomonas oryzae pv. oryzae was significantly suppressed in oscbt-1 plants. Histochemical analysis indicated that the hypersensitive-response was induced in the oscbt-1 mutant in response to compatible strains of fungal pathogens. OsCBT expression was induced upon challenge with fungal elicitor. We also observed significant increase in the level of pathogenesis-related genes in the oscbt-1 mutant even under pathogen-free condition. Taken together, the results support an idea that OsCBT might act as a negative regulator on plant defense.
BackgroundIn contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits.ResultsWe propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color.ConclusionsWe suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.
Background: JNK signaling involved in regulation of chondrogenic differentiation contributes modulation of miR-34a. Results: JNK signaling modulates miR-34a level and regulates stress fiber formation in chondroblasts. Conclusion: miR-34a regulates RhoA/Rac1 cross-talk and negatively modulates the actin cytoskeleton reorganization during chondrogenesis. Significance: This study provides new insights into understanding the regulatory role of miR-34a in the process of chondrogenic differentiation.
Tocochromanols are potent lipid-soluble antioxidants and essential nutrients for human health. Genetic engineering techniques were used to develop soybeans with enhanced vitamin E levels, including tocotrienols, which are not found in soybean. The gene encoding rice homogentisate geranylgeranyl transferase (HGGT) was overexpressed in soybeans using seed-specific and constitutive promoters. The association between abundance of vitamin E isomers and antioxidant activity was investigated during seed germination. With the exception of β-tocotrienol, all vitamin E isomers were detected in germinating seeds expressing OsHGGT. The antioxidant properties of germinating seed extracts were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals and lipid peroxidation (TBARS). Compared with intact wild-type seeds, transgenic seeds showed increases in radical scavenging of 5.4-17 and 23.2-35.3% in the DPPH and ABTS assays, respectively. Furthermore, the lipid peroxidation levels were 2.0-4.5-fold lower in germinating seeds from transgenic lines than in wild-type seeds. Therefore, it appears that the antioxidant potential of transgenic oil-producing plants such as soybean, sunflower, and corn may be enhanced by overexpressing OsHGGT during seed germination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.