AMP-activated protein kinase (AMPK) functions as an energy sensor to provide metabolic adaptations under the ATP-deprived conditions such as hypoxia. In the present study, we considered a role of AMPK in the adaptive response to hypoxia by examining whether AMPK is involved in the regulation of hypoxia-inducible factor-1 (HIF-1), a heterodimeric transcription factor that is critical for hypoxic induction of physiologically important genes. We demonstrate that hypoxia or CoCl 2 rapidly activated AMPK in DU145 human prostate cancer cells, and its activation preceded the induction of HIF-1␣ expression. Under these conditions, blockade of AMPK activity by a pharmacological or molecular approach significantly attenuated hypoxia-induced responses such as HIF-1 target gene expression, secretion of vascular endothelial growth factor, glucose uptake, and HIF-1-dependent reporter gene expression, indicating that AMPK is critical for the HIF-1 transcriptional activity and its target gene expression. Its functional requirement for HIF-1 activity was also demonstrated in several different cancer cell lines, but AMPK activation alone was not sufficient to stimulate the HIF-1 transcriptional activity. We further present data showing that AMPK transmits a positive signal for HIF-1 activity via a signaling pathway that is independent of phosphatidylinositol 3-kinase/AKT and several mitogen-activated protein kinases. Taken together, our results suggest that AMPK is a novel and critical component of HIF-1 regulation, implying its new roles in oxygen-regulated cellular phenomena.The energy status of the cell plays a crucial role for cell survival, and exposure of eukaryotic cells to metabolic stresses that accompany the depletion of intracellular ATP triggers specific and systemic adaptive responses. AMP-activated protein kinase (AMPK), 1 a heterotrimeric enzyme consisting of a catalytic subunit (␣) and two regulatory subunits ( and ␥), plays a critical role as an energy sensor in these responses (reviewed in Refs. 1-3). In response to nutritional or environmental stress factors that deplete intracellular ATP, AMPK is activated by allosteric binding of AMP (4, 5) and by phosphorylation by a still uncharacterized upstream AMPK kinase (6). Once activated, AMPK minimizes further ATP consumption by suppressing ATP-consuming anabolic pathways as well as activating ATP-generating catabolic pathways. The physiological or stress conditions known to activate AMPK include exercise (7-9), nutritional starvation (10), heat shock (11), oxidative stress (12), and ischemia/hypoxia (3, 13-15). Similar to the intracellular energy status, cellular oxygen concentration is precisely regulated in mammals to maintain cellular function and integrity. The reduced oxygen availability also initiates a series of adaptive responses, and many of these are mediated by HIF-1, which trans-activates several dozens of target genes whose protein products function to increase oxygen delivery and to enhance metabolic adaptation to anaerobic conditions (reviewed in Re...
Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery datasets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5×10−8) and used pathway analysis to identify JAK-STAT/IL12/IL27 signaling and cytokine-cytokine pathways, for which relevant therapies exist.
Cardiac magnetic resonance (CMR) imaging is widely used in various medical fields related to cardiovascular diseases. Rapid technological innovations in magnetic resonance imaging in recent times have resulted in the development of new techniques for CMR imaging. T1 and T2 image mapping sequences enable the direct quantification of T1, T2, and extracellular volume fraction (ECV) values of the myocardium, leading to the progressive integration of these sequences into routine CMR settings. Currently, T1, T2, and ECV values are being recognized as not only robust biomarkers for diagnosis of cardiomyopathies, but also predictive factors for treatment monitoring and prognosis. In this study, we have reviewed various T1 and T2 mapping sequence techniques and their clinical applications.
Heart failure remains a major public health concern with a 5-year mortality rate higher than that of most cancers. Myocardial disease in heart failure is frequently accompanied by impairment of the specialized electrical conduction system and myocardium. We introduce an epicardial mesh made of electrically conductive and mechanically elastic material, to resemble the innate cardiac tissue and confer cardiac conduction system function, to enable electromechanical cardioplasty. Our epicardium-like substrate mechanically integrated with the heart and acted as a structural element of cardiac chambers. The epicardial device was designed with elastic properties nearly identical to the epicardial tissue itself and was able to detect electrical signals reliably on the moving rat heart without impeding diastolic function 8 weeks after induced myocardial infarction. Synchronized electrical stimulation over the ventricles by the epicardial mesh with the high conductivity of 11,210 S/cm shortened total ventricular activation time, reduced inherent wall stress, and improved several measures of systolic function including increases of 51% in fractional shortening,~90% in radial strain, and 42% in contractility. The epicardial mesh was also capable of delivering an electrical shock to terminate a ventricular tachyarrhythmia in rodents. Electromechanical cardioplasty using an epicardial mesh is a new pathway toward reconstruction of the cardiac tissue and its specialized functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.