AMP-activated protein kinase (AMPK) functions as an energy sensor to provide metabolic adaptations under the ATP-deprived conditions such as hypoxia. In the present study, we considered a role of AMPK in the adaptive response to hypoxia by examining whether AMPK is involved in the regulation of hypoxia-inducible factor-1 (HIF-1), a heterodimeric transcription factor that is critical for hypoxic induction of physiologically important genes. We demonstrate that hypoxia or CoCl 2 rapidly activated AMPK in DU145 human prostate cancer cells, and its activation preceded the induction of HIF-1␣ expression. Under these conditions, blockade of AMPK activity by a pharmacological or molecular approach significantly attenuated hypoxia-induced responses such as HIF-1 target gene expression, secretion of vascular endothelial growth factor, glucose uptake, and HIF-1-dependent reporter gene expression, indicating that AMPK is critical for the HIF-1 transcriptional activity and its target gene expression. Its functional requirement for HIF-1 activity was also demonstrated in several different cancer cell lines, but AMPK activation alone was not sufficient to stimulate the HIF-1 transcriptional activity. We further present data showing that AMPK transmits a positive signal for HIF-1 activity via a signaling pathway that is independent of phosphatidylinositol 3-kinase/AKT and several mitogen-activated protein kinases. Taken together, our results suggest that AMPK is a novel and critical component of HIF-1 regulation, implying its new roles in oxygen-regulated cellular phenomena.The energy status of the cell plays a crucial role for cell survival, and exposure of eukaryotic cells to metabolic stresses that accompany the depletion of intracellular ATP triggers specific and systemic adaptive responses. AMP-activated protein kinase (AMPK), 1 a heterotrimeric enzyme consisting of a catalytic subunit (␣) and two regulatory subunits ( and ␥), plays a critical role as an energy sensor in these responses (reviewed in Refs. 1-3). In response to nutritional or environmental stress factors that deplete intracellular ATP, AMPK is activated by allosteric binding of AMP (4, 5) and by phosphorylation by a still uncharacterized upstream AMPK kinase (6). Once activated, AMPK minimizes further ATP consumption by suppressing ATP-consuming anabolic pathways as well as activating ATP-generating catabolic pathways. The physiological or stress conditions known to activate AMPK include exercise (7-9), nutritional starvation (10), heat shock (11), oxidative stress (12), and ischemia/hypoxia (3, 13-15). Similar to the intracellular energy status, cellular oxygen concentration is precisely regulated in mammals to maintain cellular function and integrity. The reduced oxygen availability also initiates a series of adaptive responses, and many of these are mediated by HIF-1, which trans-activates several dozens of target genes whose protein products function to increase oxygen delivery and to enhance metabolic adaptation to anaerobic conditions (reviewed in Re...