Lung cancer is recently regarded as an overhealed inflammatory disease. Serum amyloid A (SAA) is known as an acute phase protein, but it is likely involved in the cancer pathogenesis. We identified both SAA1 and SAA2 in the pooled sera of lung cancer patients but not in the healthy control, by LC-MS/MS analysis. We found that about 14-fold higher levels of SAA in lung cancer patients' sera and plasma compared to healthy controls by ELISA using total 350 samples (13.89 ± 37.18 vs 190.49 ± 234.70 ug/mL). The SAA levels were also significantly higher than in other pulmonary disease or other cancers. An immunohistochemical study using tissue microarray showed that, unlike other cancer tissues, lung cancer tissues highly express SAA. Further in vitro experiments showed that SAA is induced from lung cancer cells by the interaction with THP-1 monocytes and this, in return, induces MMP-9 from THP-1. In in vivo animal models, overexpressed SAA promoted Lewis lung carcinoma (LLC) cells to metastasize and colonize in the lung. Our data suggest that a higher concentration of SAA can serve as an indicator of lung adenocarcinoma and represents a therapeutic target for the inhibition of lung cancer metastasis.
Small cell lung cancer (SCLC) is an aggressive type of lung cancer, and the detection of SCLCs at an early stage is necessary for successful therapy and for improving cancer survival rates. Fucosylation is one of the most common glycosylation-based modifications. Increased levels of fucosylation have been reported in a number of pathological conditions, including cancers. In this study, we aimed to identify and validate the aberrant and selective fucosylated glycoproteins in the sera of patients with SCLC. Fucosylated glycoproteins were enriched by the Aleuria aurantia lectin column after serum albumin and IgG depletion. In a narrowed down and comparative data analysis of both label-free proteomics and isobaric peptide-tagging chemistry iTRAQ approaches, the fucosylated glycoproteins were identified as up- or down-regulated in the sera of limited disease and extensive disease stage patients with SCLC. Verification was performed by multiple reaction monitoring-mass spectrometry to select reliable markers. Four fucosylated proteins, APCS, C9, SERPINA4, and PON1, were selected and subsequently validated by hybrid A. aurantia lectin ELISA (HLE) and Western blotting. Compared with Western blotting, the HLE analysis of these four proteins produced more optimal diagnostic values for SCLC. The PON1 protein levels were significantly reduced in the sera of patients with SCLC, whereas the fucosylation levels of PON1 were significantly increased. Fucosylated PON1 exhibited an area under curve of 0.91 for the extensive disease stage by HLE, whereas the PON1 protein levels produced an area under curve of 0.82 by Western blot. The glycan structural analysis of PON1 by MS/MS identified a biantennary fucosylated glycan modification consisting of a core + 2HexNAc + 1Fuc at increased levels in the sera of patients with SCLC. In addition, the PON1 levels were decreased in the sera of the Lewis lung carcinoma lung cancer mouse model that we examined. Our data suggest that fucosylated protein biomarkers, such as PON1, and their fucosylation levels and patterns can serve as diagnostic and prognostic serological markers for SCLC.
Opuntia humifusa Raf. (O. humifusa Raf.) is a member of the Cactaceae family. To determine the antioxidative and anti-inflammatory effects of this herb, various solvent fractions (methanol, hexane, chloroform, ethyl acetate, butanol, and water) prepared from the leaves of cacti were tested using DPPH (2,2-diphenyl-l-picrylhydrazyl radical) and xanthine oxidase assays, and nitric oxide (NO)-producing macrophage cells. We found that O. humifusa Raf. displayed potent antioxidative and anti-inflammatory activity. Thus, all solvent fractions, except for the water layer, showed potent scavenging effects. The scavenging effect of the ethyl acetate fraction was higher than that of the other fractions, with IC50 values of 3.6 and 48.2 microg mL(-1). According to activity-guided fractionation, one of the active radical scavenging principles in the ethyl acetate fraction was found to be quercetin. In contrast, only two fractions (chloroform and ethyl acetate) significantly suppressed nitric oxide production from the lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, chloroform and ethyl acetate fractions significantly blocked the expression of inducible nitric oxide synthetase (iNOS) and interleukin-6 (IL-6) from the RAW264.7 cells stimulated by LPS. Moreover, ethyl acetate fractions significantly blocked the expression of IL-1beta from the RAW264.7 cells stimulated by LPS. Therefore, the results suggested that O. humifusa Raf. may modulate radical-induced toxicity via both direct scavenging activity and the inhibition of reactive species generation, and the modulation of the expression of inflammatory cytokines. Finally, O. humifusa Raf. may be useful as a functional food or drug against reactive species-mediated disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.