Chitosan (CTS)/gelatin (GEL)/poly(vinyl alcohol) (PVA)-based composite films with different concentrations of Duchesnea indica extract (DIE) (6.25 and 25 mg/mL), an antimicrobial agent, were manufactured using a casting technique. Results indicated that elongation at break decreased as DIE was added at higher concentrations. Composite films showed no significant differences in thickness, tensile strength, and water vapor permeability. Scanning electron microscopy images revealed that DIE was successfully incorporated into film matrices to interact with polymers. The addition of DIE to the film inhibited the growth of S. aureus by up to 4.9 log CFU/mL. The inhibitory effect on S. aureus using DIE-incorporated coating applied to strawberries was greatest at room temperature storage for 24 h only when it was coated twice or more. The maximum inhibition in strawberries was 2.5 log CFU/g when they were coated twice and 3.2 log CFU/g when they were coated three times. The results of this study suggest that DIE could be used as a natural antimicrobial agent, and DIE-integrated CTS/GEL/PVA films or coatings have potential as a food packaging alternative for preventing foodborne pathogen contamination.
Silver nanoparticles (AgNPs) were synthesized using the whole plant of Duchesnea indica (DI) which was extracted in different solvents; the antimicrobial effects of the extract were investigated in this study. The extraction of DI was performed using three different solvents: water, pure ethanol (EtOH), and pure dimethyl sulfoxide (DMSO). AgNP formation was monitored by measuring the UV–Vis spectrum of each reaction solution. After synthesis for 48 h, the AgNPs were collected and the negative surface charge and size distribution of the synthesized AgNPs were measured using dynamic light scattering (DLS). The AgNP structure was determined by high-resolution powder X-ray diffraction (XRD) and the AgNP morphology was investigated using transmission electron microscopy (TEM). AgNP antibacterial activities were evaluated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, and Pseudomonas aeruginosa using the disc diffusion method. Additionally, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were also determined. Biosynthesized AgNPs showed enhanced antibacterial activity against B. cereus, S. aureus, E. coli, S. enteritidis, and P. aeruginosa compared with that of pristine solvent extract. These results suggest that AgNPs synthesized from extracts of DI are promising antibacterial agents against pathogenic bacteria and can be further applied in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.