Synaptic cell adhesion molecules (CAMs) regulate synapse formation through their trans-synaptic and heterophilic adhesion. Here we show that postsynaptic netrin-G ligand (NGL) CAMs associate with netrin-G CAMs in an isoform-specific manner and, through their cytosolic tail, with the abundant postsynaptic scaffold postsynaptic density-95 (PSD-95). Overexpression of NGL-2 in cultured rat neurons increased the number of PSD-95-positive dendritic protrusions. NGL-2 located on heterologous cells or beads induced functional presynaptic differentiation in contacting neurites. Direct aggregation of NGL-2 on the surface membrane of dendrites induced the clustering of excitatory postsynaptic proteins. Competitive inhibition by soluble NGL-2 reduced the number of excitatory synapses. NGL-2 knockdown reduced excitatory, but not inhibitory, synapse numbers and currents. These results suggest that NGL regulates the formation of excitatory synapses.
SummaryFollowing cessation of growth, yeast cells remain viable in a nondividing state for a period of time known as the chronological lifespan (CLS). Autophagy is a degradative process responsible for amino acid recycling in response to nitrogen starvation and amino acid limitation. We have investigated the role of autophagy during chronological aging of yeast grown in glucose minimal media containing different supplemental essential and nonessential amino acids. Deletion of ATG1 or ATG7, both of which are required for autophagy, reduced CLS, whereas deletion of ATG11, which is required for selective targeting of cellular components to the vacuole for degradation, did not reduce CLS. The nonessential amino acids isoleucine and valine, and the essential amino acid leucine, extended CLS in autophagy-deficient as well as autophagy-competent yeast. This extension was suppressed by constitutive expression of GCN4, which encodes a transcriptional regulator of general amino acid control (GAAC). Consistent with this, GCN4 expression was reduced by isoleucine and valine. Furthermore, elimination of the leucine requirement extended CLS and prevented the effects of constitutive expression of GCN4. Interestingly, deletion of LEU3, a GAAC target gene encoding a transcriptional regulator of branched side chain amino acid synthesis, dramatically increased CLS in the absence of amino acid supplements. In general, this indicates that activation of GAAC reduces CLS whereas suppression of GAAC extends CLS in minimal medium. These findings demonstrate important roles for autophagy and amino acid homeostasis in determining CLS in yeast.
Synaptic cell adhesion molecules (CAMs) are known to play key roles in various aspects of synaptic structures and functions, including early differentiation, maintenance, and plasticity. We herein report the identification of a family of cell adhesion-like molecules termed SALM that interacts with the abundant postsynaptic density (PSD) protein PSD-95. SALM2, a SALM isoform, distributes to excitatory, but not inhibitory, synaptic sites. Overexpression of SALM2 increases the number of excitatory synapses and dendritic spines. Mislocalized expression of SALM2 disrupts excitatory synapses and dendritic spines. Bead-induced direct aggregation of SALM2 results in coclustering of PSD-95 and other postsynaptic proteins, including GKAP and AMPA receptors. Knockdown of SALM2 by RNA interference reduces the number of excitatory synapses and dendritic spines and the frequency, but not amplitude, of miniature excitatory postsynaptic currents. These results suggest that SALM2 is an important regulator of the differentiation of excitatory synapses.
The cellular and molecular mechanisms underlying the development and maintenance of dendritic spines are not fully understood. ADP-ribosylation factor 6 (ARF6) is a small GTPase known to regulate actin remodeling and membrane traffic. Here, we report involvement of ARF6 and exchange factor for ARF6 (EFA6A) in the regulation of spine development and maintenance. An active form of ARF6 promotes the formation of dendritic spines at the expense of filopodia. EFA6A promotes spine formation in an ARF6 activation-dependent manner. Knockdown of ARF6 and EFA6A by small interfering RNA decreases spine formation. Live imaging indicates that ARF6 knockdown decreases the conversion of filopodia to spines and the stability of early spines. The spine-promoting effect of ARF6 is partially blocked by Rac1. ARF6 and EFA6A protect mature spines from inactivity-induced destabilization. These results suggest that ARF6 and EFA6A may regulate the conversion of filopodia to spines and the stability of both early and mature spines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.