The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based ‘best practices’. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate ‘best practices’ are used by sprout growers.
Scaffold proteins play a critical role in controlling the activity of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Shoc2 is a leucine-rich repeat scaffold protein that acts as a positive modulator of ERK1/2 signaling. However, the precise mechanism by which Shoc2 modulates the activity of the ERK1/2 pathway is unclear. Here we report the identification of the E3 ubiquitin ligase HUWE1 as a binding partner and regulator of Shoc2 function. HUWE1 mediates ubiquitination and, consequently, the levels of Shoc2. Additionally, we show that both Shoc2 and HUWE1 are necessary to control the levels and ubiquitination of the Shoc2 signaling partner, RAF-1. Depletion of HUWE1 abolishes RAF-1 ubiquitination, with corresponding changes in ERK1/2 pathway activity occurring. Our results indicate that the HUWE1-mediated ubiquitination of Shoc2 is the switch that regulates the transition from an active to an inactive state of the RAF-1 kinase. Taken together, our results demonstrate that HUWE1 is a novel player involved in regulating ERK1/2 signal transmission through the Shoc2 scaffold complex.
The scaffold protein Shoc2 accelerates activity of the ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1) pathway. Mutations in Shoc2 result in Noonan-like RASopathy, a developmental disorder with a wide spectrum of symptoms. The amplitude of the ERK1/2 signals transduced through the complex is fine-tuned by the HUWE1-mediated ubiquitylation of Shoc2 and its signaling partner RAF-1. Here, we provide a mechanistic basis of how ubiquitylation of Shoc2 and RAF-1 is controlled. We demonstrate that the newly identified binding partner of Shoc2, the (AAA+) ATPase PSMC5, triggers translocation of Shoc2 to endosomes. At the endosomes, PSMC5 displaces the E3 ligase HUWE1 from the scaffolding complex to attenuate ubiquitylation of Shoc2 and RAF-1. We show that a RASopathy mutation that changes the subcellular distribution of Shoc2 leads to alterations in Shoc2 ubiquitylation due to the loss of accessibility to PSMC5. In summary, our results demonstrate that PSMC5 is a new and important player involved in regulating ERK1/2 signal transmission through the remodeling of Shoc2 scaffold complex in a spatially-defined manner.
Cronobacter sakazakii is a Gram-negative opportunistic pathogen that causes life- threatening infantile infections, such as meningitis, septicemia, and necrotizing enterocolitis, as well as pneumonia, septicemia, and urinary tract and wound infections in adults. Here, we report 26 draft genome sequences of C. sakazakii, which were obtained from dried spices from the USA, the Middle East, China, and the Republic of Korea. The average genome size of the C. sakazakii genomes was 4393 kb, with an average of 4055 protein coding genes, and an average genome G + C content of 56.9%. The genomes contained genes related to carbohydrate transport and metabolism, amino acid transport and metabolism, and cell wall/membrane biogenesis. In addition, we identified genes encoding proteins involved in osmotic responses such as DnaJ, Aquaproin Z, ProQ, and TreF, as well as virulence-related and heat shock-related proteins.Interestingly, a metabolic island comprised of a variably-sized xylose utilization operon was found within the spice-associated C. sakazakii genomes, which supports the hypothesis that plants may serve as transmission vectors or alternative hosts for Cronobacter species. The presence of the genes identified in this study can support the remarkable phenotypic traits of C. sakazakii such as the organism’s capabilities of adaptation and survival in response to adverse growth environmental conditions (e.g. osmotic and desiccative stresses). Accordingly, the genome analyses provided insights into many aspects of physiology and evolutionary history of this important foodborne pathogen.Electronic supplementary materialThe online version of this article (10.1186/s40793-018-0339-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.