To determine the thermal characteristics of linear and crosslinked polyimides (PIs), BTDA, ODPA, and 6FDA were used to synthesize polyimides. Thermal degradation temperature and glass transition temperature of the resulting PIs were measured using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). To measure the change in modulus and coefficient of thermal expansion (CTE) depending on dianhydride structure, a dynamic mechanical analyzer (DMA) and thermo-mechanical analyzer (TMA) were used. The thermal degradation and glass transition temperature properties of linear PIs varied according to whether the linear chain adopted a bulky or flexible structure. Dynamic modulus and thermal expansion values of linear polyimides also showed good agreement with the TGA and DSC results. As we expected, linear polyimide with bulky 6FDA groups showed better thermal behavior than the flexible polyimides. Crosslinked polyimide nadic end-capped (norbornene) with a bulky dianhydride group had a lower thermal degradation temperature and higher CTE than flexible BTDA and ODPA polyimides. Our results indicate that the mobility of the dianhydride group affects the thermal behaviors of linear and crosslinked polyimides in different ways.
In this study, poly(amide-imide)s are synthesized for electronic materials by adding amide groups into polyimide. As it is expected, poly(amide-imide) shows an amorphous structure with a lower glass transition temperature and residual stress than the neat polyimide due to the high steric hindrance of the amide group. Also, the modifi cation to the polyimide structure leads to higher transmittance and enhances colorless properties. Consequently, successful synthesis of poly(amide-imide) s is demonstrated which has wide applicability in the electronic industries due to their low glass transition temperature. It is expected that semiconductor and integrated circuit products can be manufactured utilizing poly(amide-imide)s with high reliability and a low chance of cracking due to their lower residual stress. Furthermore, it envisioned that the improved optical properties of poly(amide-imide) materials will allow for their applications in transparent displays and coating products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.