Metal halide perovskites (MHPs) have numerous advantages as light emitters such as high photoluminescence quantum efficiency with a direct bandgap, very narrow emission linewidth, high charge-carrier mobility, low energetic disorder, solution processability, simple color tuning, and low material cost. Based on these advantages, MHPs have recently shown unprecedented radical progress (maximum current efficiency from 0.3 to 42.9 cd A ) in the field of light-emitting diodes. However, perovskite light-emitting diodes (PeLEDs) suffer from intrinsic instability of MHP materials and instability arising from the operation of the PeLEDs. Recently, many researchers have devoted efforts to overcome these instabilities. Here, the origins of the instability in PeLEDs are reviewed by categorizing it into two types: instability of (i) the MHP materials and (ii) the constituent layers and interfaces in PeLED devices. Then, the strategies to improve the stability of MHP materials and PeLEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles. Based on this review of recent advances, future research directions and an outlook of PeLEDs for display applications are suggested.
Ruddlesden–Popper phase (RP‐phase) perovskites that consist of 2D perovskite slabs interleaved with bulky organic ammonium (OA) are favorable for light‐emitting diodes (LEDs). The critical limitation of LED applications is that the insulating OA arranged in a preferred orientation limits charge transport. Therefore, the ideal solution is to achieve a randomly connected structure that can improve charge transport without hampering the confinement of the electron–hole pair. Here, a structurally modulated RP‐phase metal halide perovskite (MHP), (PEA)2(CH3NH3)m−1PbmBr3m+1 is introduced to make the randomly oriented RP‐phase unit and ensure good connection between them by applying modified nanocrystal pinning, which leads to an increase in the efficiency of perovskite LEDs (PeLEDs). The randomly connected RP‐phase MHP forces contact between inorganic layers and thereby yields efficient charge transport and radiative recombination. Combined with an optimal dimensionality, (PEA)2(CH3NH3)2Pb3Br10, the structurally modulated RP‐phase MHP exhibits increased photoluminescence quantum efficiency, from 0.35% to 30.3%, and their PeLEDs show a 2,018 times higher current efficiency (20.18 cd A−1) than in the 2D PeLED (0.01 cd A−1) and 673 times than in the 3D PeLED (0.03 cd A−1) using the same film formation process. This approach provides insight on how to solve the limitation of RP‐phase MHP for efficient PeLEDs.
Conventional solution-processing techniques such as the spin-coating method have been used successfully to reveal excellent properties of organic–inorganic halide perovskites (OHPs) for optoelectronic devices such as solar cell and light-emitting diode, but it is essential to explore other deposition techniques compatible with large-scale production. Single-source flash evaporation technique, in which a single source of materials of interest is rapidly heated to be deposited in a few seconds, is one of the candidate techniques for large-scale thin film deposition of OHPs. In this work, we investigated the reliability and controllability of the single-source flash evaporation technique for methylammonium lead iodide (MAPbI3) perovskite. In-depth statistical analysis was employed to demonstrate that the MAPbI3 films prepared via the flash evaporation have an ultrasmooth surface and uniform thickness throughout the 4-inch wafer scale. We also show that the thickness and grain size of the MAPbI3 film can be controlled by adjusting the amount of the source and number of deposition steps. Finally, the excellent large-area uniformity of the physical properties of the deposited thin films can be transferred to the uniformity in the device performance of MAPbI3 photodetectors prepared by flash evaporation which exhibited the responsivity of 0.2 A/W and detectivity of 3.82 × 1011 Jones.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.