Promising carbon fiber-reinforced thermoplastic (CF/polyetherketoneketone (PEKK)) composites were fabricated by the state-of-the-art technology known as “Automated Fiber Placement.” The mechanical properties of CF/PEKK were evaluated for four different postprocessing methods: in situ consolidation, annealing, vacuum bag only (VBO), and hot press (HP). The evaluation was performed by narrowing down the relevant processing parameters (temperature and layup speed). Furthermore, the void content and crystallinity of CF/PEKK were measured to determine the effect of these postprocessing processes. The HP process resulted in the best quality with the highest interlaminar shear strength, highest crystallinity degree, and lowest void content. The second most effective method was VBO, and annealing also realized an improvement compared with in situ consolidation. The correlation between the postprocessing method and the void content and crystallinity degree was also discussed.
This paper presents details of the mechanical properties related to the static and fatigue strength of carbon fiber reinforced polyetherketoneketone (CF/PEKK) thermoplastic induction-welded composite joints. To better understand the process parameters, the finite element modeling (FEM) of the heat distribution was analyzed based on the generator power, coil coupling distance, coil moving speed, frequency, compaction force, and coil geometry while maintaining the optimal coil speed. The temperature behavior calculated using the simulation model exhibited good agreement with experimental results. A microscopic inspection, non-destructive test (NDT) was conducted to check the morphology characteristics of the welded joints. To check the mechanical performance of the induction-welded specimens, single-lap shear strength (SLSS) tests under static and cyclical fatigue loading conditions were conducted to check the weld qualities from a practical perspective. The mechanical testing results indicated that the static and cyclical fatigue specimens were dominated by a cohesive failure mode with a light fiber tear (LFT). These results suggested that using the optimal process parameters based on multi-physics FEM simulation could potentially improve mechanical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.