This research was conducted to determine the effects of selected inoculant on the silage with different wilting times. The ryes were unwilted or wilted for 12 h. Each rye forage was ensiled for 100 d in quadruplicate with commercial inoculant (Lactobacillus plantarum sp.; LPT) or selected inoculant (Lactobacillus brevis 100D8 and Leuconostoc holzapfelii 5H4 at 1:1 ratio; MIX). In vitro dry matter digestibility and in vitro neutral detergent fiber digestibility were highest in the unwilted MIX silages (p < 0.05), and the concentration of ruminal acetate was increased in MIX silages (p < 0.001; 61.4% vs. 60.3%) by the increase of neutral detergent fiber digestibility. The concentration of ruminal ammonia-N was increased in wilted silages (p < 0.001; 34.8% vs. 21.1%). The yeast count was lower in the MIX silages than in the LPT silages (p < 0.05) due to a higher concentration of acetate in MIX silages (p < 0.05). Aerobic stability was highest in the wilted MIX silages (p < 0.05). In conclusion, the MIX inoculation increased aerobic stability and improved fiber digestibility. As a result of the wilting process, ammonia-N in silage decreased but ruminal ammonia-N increased. Notably, the wilted silage with applied mixed inoculant had the highest aerobic stability.
The present study investigated the effects of microbial additives producing antimicrobial and digestive-enzyme activities on the growth performance, blood metabolites, and fecal microflora of weaning pigs from 21 to 42 d of age. A total of 144 weaning pigs (1:1 ratio of gilt and boar; 21 d of age; 7.40 ± 0.53 kg of average body weight) were randomly distributed into four supplementary levels of microbial additive (0 vs. 0.5 vs. 1.0 vs. 1.5% of fresh weight) with three pens of replication, consisting of 12 weaning pigs per pen. All weaning pigs were maintained with the same basal diet for 21 d. Blood and feces were subsampled at day 21. Feed efficiency tended to increase linearly (p = 0.069) with an increasing supplementation level. Insulin, insulin-like growth factor 1, and blood glucose presented a quadratic effect (p < 0.05) with an increasing supplementation level, and these blood metabolites were highest at the 1% supplementation level. Immunoglobulin G in blood increased linearly by (p < 0.05) increasing the supplementation level. Salmonella and Escherichia coli in feces were decreased linearly by (p < 0.05) increasing the supplementation level. In conclusion, supplementation of microbial additive at 1.0% improved the feed efficiency, blood metabolites, and fecal microflora of weaning pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.