A method for measuring the ethanol concentration in a yeast culture broth was developed using both microtubes and a 96-deepwell microplate. The strategy involved first the solvent extraction of ethanol from the yeast culture broth and measurements of the ethanol concentration using the dichromate oxidation method. Particular focus was made on selecting the extraction solvent as well as determining the measurable range of ethanol concentrations using this solvent extraction-dichromate oxidation method. This method was developed as an assay format in 2.0-ml microtubes and 1.2-ml 96-deepwell microplates, and the ethanol concentration in the batch cultures and fed-batch fermentations was measured. Tri-n-butyl phosphate [non-alcoholic solvent, density = 0.9727, solubility in water = 0.028% (w/v)] was used for solvent extraction when measuring the ethanol concentration from the yeast culture broth. The maximum detectable ethanol concentration was 8% (v/v) when 10 g potassium dichromate in 100 ml of 5 M sulfuric acid was used. The concentrations determined from the solvent extraction-dichromate oxidation methods were remarkably similar to those of gas chromatography in which samples were prepared from seven experiments, such as four batch cultures and three fed-batch fermentations.
This study was designed to evaluate the effect of NaCl on the biofilm formation of Listeria monocytogenes, Staphylococcus aureus, Shigella boydii, and Salmonella Typhimurium. The biofilm cells were cultured in media containing different NaCl concentrations (0% to 10%) for 10 d of incubation at 37 掳C using a 24-well polystyrene microtiter plate, collected by swabbing methods, and enumerated using plate count method. The attachment and detachment kinetic patterns were estimated according to the modified Gompertz model. The cell surface hydrophobicity and auto-aggregation were observed at different NaCl concentrations. Most strains showed 2 distinctive phases at lower than 6% NaCl, while the numbers of adhered cells gradually increased throughout the incubation period at 4% to 10% NaCl. At 0% NaCl, the numbers of adhered L. monocytogenes, S. aureus, S. boydii, and S. Typhimurium cells rapidly increased up to 7.04, 6.47, 6.39, and 7.27 log CFU/cm(2), respectively, within 4 d of incubation. The maximum growth rate (k(A)) and specific growth rate (渭(A)) of adherent pathogenic cells were decreased with increasing NaCl concentration. Noticeable decline in the numbers of adherent cells was observed at low concentration levels of NaCl (<2%). The adherence abilities of foodborne pathogens were influenced by the physicochemical surface properties. The hydrophobicity and auto-aggregation enhanced the biofilm formation during the incubation periods. Therefore, this study could provide useful information to better understand the adhesion and detachment capability of foodborne pathogens on food contact surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.