Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C.
We have investigated morphologies and conductivities of ionic liquids (ILs) incorporated poly(styrenesulfonate-b-methylbutylene) (PSS-b-PMB) block copolymers by varying kinds of heterocyclic diazoles in ILs. A low molecular weight PSS-b-PMB copolymer (3.5–3.1 kg/mol) with sulfonation level of 17 mol % was employed as a matrix polymer, which indicates disordered morphology at entire temperature examined. The addition of different ILs results in the emergence of various ordered morphologies such as lamellar, hexagonal cylinder, and gyroid structures. Interestingly, it has been revealed that ring structures and alkyl substituents in diazoles play an important role in determining the morphologies of ILs impregnated PSS-b-PMB copolymers, attributed to the dissimilar strength of ionic interaction. Heating the ILs doped PSS-b-PMB copolymers causes intriguing thermoreversible order–order and order–disorder phase transitions, which can be rationalized by classical block copolymer thermodynamics. From conductivity measurements, it has been found that the enhanced conductivity could be achieved by increasing number of protic sites in heterocyclic diazoles. Upon exploring morphology effects on conductivities of ILs-containing PSS-b-PMB copolymers, with decoupled segmental motion of polymer chains and ion transport, similar morphology factor of 0.4 has determined if the morphologies are appeared to be lamellar and/or hexagonal cylinder structures. In contrast, the gyroid-forming sample revealed apparently high morphology factor in the range of 0.6 to 0.7, which is intimately related to better connectivity of ionic channels along cocontinuous PSS phases.
We have investigated a new means to control the morphology and conductivity of block copolymer electrolytes by the inclusion of ionic units at the chain ends. A set of poly(styrene-b-ethylene oxide) (PS-b-PEO) block copolymers having dissimilar PEO end groups (−OH, −SO3H, and −SO3Li) exhibited various self-assembled morphologies including disordered, lamellar, and hexagonal cylindrical phases. Strikingly, the addition of Li salts to PS-b-PEO with sulfonate terminal groups afforded enriched nanostructures with significant differences in their conductivities depending on the salt concentration. In particular, a gyroid morphology with a 2-fold-enhanced normalized ionic conductivity was found for the sulfonate-terminated PS-b-PEO when compared to disordered PS-b-PEO-OH. This is closely related to the structural advantages of gyroid having cocontinuous ionic channels, which enable efficient transport of Li+ ions via less tortuous ion conduction pathways. This work presents fascinating experimental insights on the enhancement of ion transport efficiencies by modulating the self-assembly nature of polymer electrolytes by substituting with a single end-functional group.
We report a new class of polymer electrolytes that exhibit high Li + -ionic conductivity and thermal stability up to 200 °C. The polymer electrolyte consists of a solvate ionic liquid ([Li(G4)][TFSA]), comprising an equimolar mixture of lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) and tetraglyme (G4), and a well-defined ABA-triblock copolymer, polystyrene-b-poly(methyl methacrylate)-b-polystyrene (PStb-PMMA-b-PSt, SMS). The electrolyte is formed by the selfassembly of SMS, where the solvatophobic PSt segments serves as physical cross-linking points, and the solvatophilic PMMA segment with preferentially dissolved [Li(G4)][TFSA] forms ion-conduction paths. In the electrolyte, the preservation of the complex cation [Li(G4)] + in the PMMA phase was demonstrated by pulsed-field gradient spin−echo (PGSE) NMR, Raman spectra, and thermogravimetric analysis. Because of the preservation of [Li(G4)] + , which hinders the direct interaction of Li + with the polymer segment and the coupling of the ionic transport from the segmental motion, the room temperature ionic conductivity of the electrolyte reached an appreciable level (10 −4 −10 −3 S cm −1 ).
A new method to develop two-dimensional PANI nanosheets using ice as a removable hard template is presented. Distinctly high current flows of 5.5 mA at 1 V and a high electrical conductivity of 35 S cm(-1) were obtained for the polyaniline (PANI) nanosheets, which marked a significant improvement from previously values on other PANIs reported over the past decades. These improved electrical properties of ice-templated PANI nanosheets were attributed to the long-range ordered edge-on π-stacking of the quinoid ring, ascribed to the ice surface-assisted vertical growth of PANI. The unprecedented advantages of the ice-templated PANI nanosheets are two-fold. First, the PANI nanosheet can be easily transferred onto various types of substrates via float-off from the ice surfaces. Second, PANI can be patterned into any shape using predetermined masks, and this is expected to facilitate the eventual convenient and inexpensive application of conducting polymers in versatile electronic device forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.