Background/Aims: Radiation-induced skin fibrosis is a common side effect of clinical radiotherapy. Our previous next-generation sequencing (NGS) study demonstrated the reduced expression of the regulatory α subunit of phosphatidylinositol 3-kinase (PIK3r1) in irradiated murine skin. Metformin has been reported to target the PIK3-FOXO3 pathway. In this study, we investigated the effects of metformin on radiation-induced skin fibrosis. Methods: Metformin was orally administered to irradiated mice. Skin fibrosis was analyzed by staining with H&E and Masson’s trichrome stain. The levels of cytokines and chemokines associated with fibrosis were analyzed by immunohistochemistry and quantitative RT-PCR. The roles of PIK3rl and FOXO3 in radiation-induced skin fibrosis were studied by overexpressing PIK3rl and transfecting FOXO3 siRNA in NIH3T3 cells and mouse-derived dermal fibroblasts (MDF). Results: The oral administration of metformin significantly reduced radiation-induced skin thickening and collagen accumulation and significantly reduced the radiation-induced expression of FOXO3 in murine skin. Additionally, the overexpression of PIK3r1 reduced the radiation-induced expression of FOXO3, while FOXO3 silencing decreased the radiation-induced expression of TGFβ in vitro. Conclusions: The results indicated that metformin suppresses radiation-induced skin injuries by modulating the expression of FOXO3 through PIK3r1. Collectively, the data obtained in this study suggested that metformin could be a potent therapeutic agent for alleviating radiation-induced skin fibrosis.
Graves’ orbitopathy (GO) is characterised in early stages by orbital fibroblast inflammation, which can be aggravated by oxidative stress and often leads to fibrosis. Protein tyrosine protein 1B (PTP1B) is a regulator of inflammation and a therapeutic target in diabetes. We investigated the role of PTP1B in the GO mechanism using orbital fibroblasts from GO and healthy non-GO subjects. After 24 hours of transfection with
PTPN1
siRNA, the fibroblasts were exposed to interleukin (IL)-1β, cigarette smoke extract (CSE), H
2
O
2
, and transforming growth factor (TGF)-β stimulations. Inflammatory cytokines and fibrosis-related proteins were analysed using western blotting and/or enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) release was detected using an oxidant-sensitive fluorescent probe. IL-1β, tumor necrosis factor (TNF)-α, bovine thyroid stimulating hormone (bTSH), high-affinity human stimulatory monoclonal antibody of TSH receptor (M22), and insulin-like growth factor-1 (IGF-1) significantly increased PTP1B protein production in GO and non-GO fibroblasts.
PTPN1
silencing significantly blocked IL-1β-induced inflammatory cytokine production, CSE- and H
2
O
2
-induced ROS synthesis, and TGF-β-induced expression of collagen Iα, α-smooth muscle actin (SMA), and fibronectin in GO fibroblasts. Silencing
PTPN1
also decreased phosphorylation levels of Akt, p38, and c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER)-stress response proteins in GO cells. PTP1B may be a potential therapeutic target of anti-inflammatory, anti-oxidant and anti-fibrotic treatment of GO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.