Reactive oxygen species (ROS) play an important role in the pathogenesis of many human degenerative diseases such as cancer, aging, arteriosclerosis, and rheumatism. Much attention has been focused on the development of safe and effective antioxidants. To discover sources of antioxidative activity in marine algae, extracts from 17 kinds of seaweed were screened for their inhibitory effect on total ROS generation in kidney homogenate using 2',7'-dichlorofluorescein diacetate (DCFH-DA). ROS inhibition was seen in three species: Ulva pertusa, Symphyocladia latiuscula, and Ecklonia stolonifera. At a final concentration of 25 microg/mL, U. pertusa inhibited 85.65+/-20.28% of total ROS generation, S. latiscula caused 50.63+/-0.09% inhibitory, and the Ecklonia species was 44.30+/-7.33% inhibition. E. stolonifera Okamura (Laminariaceae), which belongs to the brown algae, has been further investigated because it is commonly used as a foodstuff in Korea. Five compounds, phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5), isolated from the ethyl acetate soluble fraction of the methanolic extract of E. stolonifera inhibited total ROS generation.
Dynamic nucleocytoplasmic shuttling of class IIa histone deacetylases (HDACs) is a fundamental mechanism regulating gene transcription. Recent studies have identified several protein kinases that phosphorylate HDAC5, leading to its exportation from the nucleus. However, the negative regulatory mechanisms for HDAC5 nuclear exclusion remain largely unknown. Here we show that cAMPactivated protein kinase A (PKA) specifically phosphorylates HDAC5 and prevents its export from the nucleus, leading to suppression of gene transcription. PKA interacts directly with HDAC5 and phosphorylates HDAC5 at serine 280, an evolutionarily conserved site. Phosphorylation of HDAC5 by PKA interrupts the association of HDAC5 with protein chaperone 14-3-3 and hence inhibits stress signal-induced nuclear export of HDAC5. An HDAC5 mutant that mimics PKA-dependent phosphorylation localizes in the nucleus and acts as a dominant inhibitor for myocyte enhancer factor 2 transcriptional activity. Molecular manipulations of HDAC5 show that PKA-phosphorylated HDAC5 inhibits cardiac fetal gene expression and cardiomyocyte hypertrophy. Our findings identify HDAC5 as a substrate of PKA and reveal a cAMP/PKA-dependent pathway that controls HDAC5 nucleocytoplasmic shuttling and represses gene transcription. This pathway may represent a mechanism by which cAMP/PKA signaling modulates a wide range of biological functions and human diseases such as cardiomyopathy.nucleocytoplasmic shuttling | phosphorylation G ene transcription is governed in part by the acetylation and deacetylation of histones, the latter of which is mediated by histone deacetylases (HDACs) (1-4). In particular, class IIa HDACs, such as HDAC5, acting as transcriptional repressors, have been implicated in cardiac hypertrophy, skeletal muscle differentiation, and angiogenesis (5-10). Dynamic nucleocytoplasmic shuttling has been proposed as a fundamental mechanism regulating the function of class IIa HDACs (1, 11-13). Recent studies have identified several protein kinases, including calmodulin-dependent protein kinases (CaMKs), protein kinase D (PKD) and salt-inducible kinase, that phosphorylate HDAC5, leading to its export from the nucleus (1, 9, 14). However, much less is understood about the negative regulatory mechanisms for the nuclear exclusion of HDAC5 (15). To date, specific protein kinases that may inhibit export of HDAC5 from the nucleus have not been identified.The cAMP/protein kinase A (PKA) signaling pathway regulates a variety of cellular functions and numerous important biological processes (16,17). Many of the effects of cAMP/PKA are mediated via changes in gene transcription. A large body of research has defined the cAMP-response element binding (CREB) proteins as PKA substrates that mediate an increase in gene expression in response to cAMP (18)(19)(20). However, whether and how the cAMP/PKA pathway inhibits gene expression remains unclear. In this study, we found that cAMP/PKA signaling represses gene transcription and cardiomyocyte hypertrophy by phosphorylating HDAC5 ...
Insulin-induced PI3K/Akt activation is known to inhibit a family of Forkhead transcription factors (FOXO), which can lead to increased oxidative stress in several model organisms. One of major transcription factors activated by oxidative stress and responsible for the production of many proinflammatory cytokines is NF-kappaB. In the present study, We were carried out to determine the relationship between FOXO1 and NF-kappaB activation using HEK293T cells and aged kidney isolated from ad libitum fed (AL) and 40% calorie restriction (CR) rats. Results showed that phosphorylation of FOXO1 and NF-kappaB activation were significantly increased in old rats. Moreover, FOXO1 phosphorylation and NF-kappaB activation were shown to be significantly lower in the CR rats compared with 24-month-old AL rats. To further explore the molecular link between FOXO and NF-kappaB, we performed transfection experiments with FOXO-mutant plasmid in cultured HEK293T cells. Treatment of the cell with insulin led to NF-kappaB activation through the phosphorylation of FOXO via the PI3K/Akt pathway. These results indicate that insulin promoted NF-kappaB activation through phosphorylation of FOXO1 by upregulating PI3K/Akt signaling. We conclude that the phosphorylation of FOXO1 regulates NF-kappaB nuclear translocation by activating PI3K/Akt during aging, which was suppressed by the hypoinsulinemic action of CR.
Macrophages are a heterogeneous population of immune cells that are essential for the initiation and containment inflammation. There are 2 well-established populations of inflammatory macrophages: classically activated M1 and alternatively activated M2 macrophages. The FoxO family of transcription factors plays key roles in a number of cellular processes, including cell growth, metabolism, survival, and inflammation. In this study, we determined whether the expression of FoxO1 contributes polarization of macrophages toward the M2-like phenotype by enhancing IL-10 cytokine expression. We identified that FoxO1 is highly expressed in M-CSF-derived (M2-like) macrophage subsets, and this M2-like macrophages showed a preferential FoxO1 enrichment on the IL-10 promoter but not in GM-CSF-derived (M1-like) macrophages during classic activation by LPS treatment, which suggests that FoxO1 enhances IL-10 by binding directly to the IL-10 promoter, especially in BMMs. In addition, our data show that macrophages in the setting of hyperglycemia contribute to the macrophage-inflammatory phenotype through attenuation of the contribution of FoxO1 to activate IL-10 expression. Our data identify a novel role for FoxO1 in regulating IL-10 secretion during classic activation and highlight the potential for therapeutic interventions for chronic inflammatory conditions, such as atherosclerosis, diabetes, inflammatory bowel disease, and arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.