A primary aim of microbial ecology is to determine patterns and drivers of community distribution, interaction, and assembly amidst complexity and uncertainty. Microbial community composition has been shown to change across gradients of environment, geographic distance, salinity, temperature, oxygen, nutrients, pH, day length, and biotic factors 1-6 . These patterns have been identified mostly by focusing on one sample type and region at a time, with insights extra polated across environments and geography to produce generalized principles. To assess how microbes are distributed across environments globally-or whether microbial community dynamics follow funda mental ecological 'laws' at a planetary scale-requires either a massive monolithic cross environment survey or a practical methodology for coordinating many independent surveys. New studies of microbial environments are rapidly accumulating; however, our ability to extract meaningful information from across datasets is outstripped by the rate of data generation. Previous meta analyses have suggested robust gen eral trends in community composition, including the importance of salinity 1 and animal association 2 . These findings, although derived from relatively small and uncontrolled sample sets, support the util ity of meta analysis to reveal basic patterns of microbial diversity and suggest that a scalable and accessible analytical framework is needed.The Earth Microbiome Project (EMP, http://www.earthmicrobiome. org) was founded in 2010 to sample the Earth's microbial communities at an unprecedented scale in order to advance our understanding of the organizing biogeographic principles that govern microbial commu nity structure 7,8 . We recognized that open and collaborative science, including scientific crowdsourcing and standardized methods 8 , would help to reduce technical variation among individual studies, which can overwhelm biological variation and make general trends difficult to detect 9 . Comprising around 100 studies, over half of which have yielded peer reviewed publications (Supplementary Table 1), the EMP has now dwarfed by 100 fold the sampling and sequencing depth of earlier meta analysis efforts 1,2 ; concurrently, powerful analysis tools have been developed, opening a new and larger window into the distri bution of microbial diversity on Earth. In establishing a scalable frame work to catalogue microbiota globally, we provide both a resource for the exploration of myriad questions and a starting point for the guided acquisition of new data to answer them. As an example of using this Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of r...
The human microbiome has emerged as a major player in regulating human health and disease. Translation studies of the microbiome have the potential to indicate clinical applications such as fecal transplants and probiotics. However, one major issue is accurate identification of microbes constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative approach using shotgun whole genome sequencing (WGS). In the present study, we analyzed the human fecal microbiome compiling a total of 194.1×106 reads from a single sample using multiple sequencing methods and platforms. Specifically, after establishing the reproducibility of our methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that shotgun whole genome sequencing has multiple advantages compared with the 16S amplicon method including enhanced detection of bacterial species, increased detection of diversity and increased prediction of genes. In addition, increased length, either due to longer reads or the assembly of contigs, improved the accuracy of species detection.
Here, we examine the synaptic function of the receptor protein tyrosine phosphatase (RPTP), Dlar, and an associated intracellular protein, Dliprin-alpha, at the Drosophila larval neuromuscular junction. We show that Dliprin-alpha and Dlar are required for normal synaptic morphology. We also find that synapse complexity is proportional to the amount of Dlar gene product, suggesting that Dlar activity determines synapse size. Ultrastructural analysis reveals that Dliprin-alpha and Dlar are required to define the size and shape of the presynaptic active zone. Accordingly, there is a concomitant decrease in synaptic transmission in both mutants. Finally, epistasis analysis indicates that Dliprin-alpha is required for Dlar's action at the synapse. These data suggest a model where Dliprin-alpha and Dlar cooperate to regulate the formation and/or maintenance of a network of presynaptic proteins.
We used serial cysteine mutagenesis to study the structure of the outer vestibule and selectivity region of the voltage-gated Na channel. The voltage dependence of Cd(2+) block enabled us to determine the locations within the electrical field of cysteine-substituted mutants in the P segments of all four domains. The fractional electrical distances of the substituted cysteines were compared with the differential sensitivity to modification by sulfhydryl-specific modifying reagents. These experiments indicate that the P segment of domain II is external, while the domain IV P segment is displaced internally, compared with the first and third domain P segments. Sulfhydryls with a steep voltage dependence for Cd(2+) block produced changes in monovalent cation selectivity; these included substitutions at the presumed selectivity filter, as well as residues in the domain IV P segment not previously recognized as determinants of selectivity. A new structural model is presented in which each of the P segments contribute unique loops that penetrate the membrane to varying depths to form the channel pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.