We used serial cysteine mutagenesis to study the structure of the outer vestibule and selectivity region of the voltage-gated Na channel. The voltage dependence of Cd(2+) block enabled us to determine the locations within the electrical field of cysteine-substituted mutants in the P segments of all four domains. The fractional electrical distances of the substituted cysteines were compared with the differential sensitivity to modification by sulfhydryl-specific modifying reagents. These experiments indicate that the P segment of domain II is external, while the domain IV P segment is displaced internally, compared with the first and third domain P segments. Sulfhydryls with a steep voltage dependence for Cd(2+) block produced changes in monovalent cation selectivity; these included substitutions at the presumed selectivity filter, as well as residues in the domain IV P segment not previously recognized as determinants of selectivity. A new structural model is presented in which each of the P segments contribute unique loops that penetrate the membrane to varying depths to form the channel pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.