This study aimed to manufacture PAN-based conductive yarn using a wet-spinning process. Two types of carbon nanomaterials, multiwall carbon nanotubes (MWCNT) and carbon nanofiber (CNF), were used alone or in a mixture. First, to derive the optimal composite solution condition for the wet spinning process, a composite solution was prepared with carbon nanomaterials of the same total mass weight (%) and three types of mechanical stirring were performed: mechanical stirring, ultra-sonication, and ball milling. A ball milling process was finally selected by analyzing the viscosity. Based on the above results, 8, 16, 24, and 32 wt% carbon nanomaterial/PAN composite solutions were prepared to produce wet spinning-based composite films before preparing a conductive yarn, and their physical and electrical properties were examined. By measuring the viscosity of the composite solution and the surface resistance of the composite film according to the type and content of carbon nanomaterials, a suitable range of viscosity was found from 103 cP to 105 cP, and the electrical percolation threshold was from 16 wt% carbon nanomaterial/PAN, which showed a surface resistance of 106 Ω/sq or less. Wet spinning was possible with a PAN-based composite solution with a high content of carbon nanomaterials. The crystallinity, crystal orientation, tenacity, and thermal properties were improved when CNF was added up to 24 wt%. On the other hand, the properties deteriorated when CNTs were added alone due to aggregation. Mixing CNT and CNF resulted in poorer properties than with CNF alone, but superior properties to CNT alone. In particular, the electrical properties after incorporating 8 wt% CNT/16 wt% CNF into the PAN, 106 Ω/cm was similar to the PAN-based conductive yarn containing 32 wt% CNF. Therefore, this yarn is expected to be applicable to various smart textiles and wearable devices because of its improved physical properties such as strength and conductivity.
Particles of sizes within the nano region have attracted many applications in different fields of science. In this study, the self assembly property in a selective solvent of block copolymers has been used for the preparation of polystyrene nanospheres. Sulfonated Styrene-Butadiene-Styrene (SSBS) tri block copolymer was used as a polymeric surfactant for synthesis of uniformly sized polystyrene nanoparticles using emulsion polymerization. The effects of initiator, monomer and block copolymer concentration to the molecular weight distribution and size distribution were investigated. Uniformly sized nanoparticles with a polydispersity index of 1.004 and diameter of 112.9nm was verified by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), respectively. Using a mixed continuous phase solution of water and methanol, it was found out that the particle size decreased relative to the increase of methanol added to the reaction solution. Associating behavior of the polyelectrolyte block copolymer in the binary solvent environment regarding size of micelle formed was reflected on the properties of the nanospheres. Nanoparticles prepared with greater methanol concentration were observed to be less than 100 nm. Size distribution was also observed to be narrower in proportion to MeOH concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.