Lymph transport inside lymphatic vessels is highly complex and not yet fully understood. So far, a consensus has not been reached among existing analytical models on how spatiotemporal coordination of...
Owing to its superior water absorption capacity, superabsorbent polymer (SAP) based on a poly (acrylic acid) network is extensively used in industrial products such as diapers, wound dressing, or surgical pads. However, because SAP does not degrade naturally, a massive amount of non-degradable waste is discarded daily, posing serious environmental problems. Considering that diapers are the most widely used end-product of SAP, we created one that is degradable by a human urinary enzyme. We chose three enzyme candidates, all of which have substrates that were modified with polymerizable groups to be examined for cleavable crosslinkers of SAP. We found that the urokinase-type plasminogen activator (uPA) substrate, end-modified with acrylamide groups at sufficient distances from the enzymatic cleavage site, can be successfully used as a cleavable crosslinker of SAP. The resulting SAP slowly degraded over several days in the aqueous solution containing uPA at a physiological concentration found in human urine and became shapeless in ~30 days.
Recent vascular mechanobiology studies find that endothelial cells (ECs) convert multiple mechanical forces into functional responses in a nonadditive way, suggesting that signaling pathways such as those regulating cytoskeleton may be shared among the processes of converting individual forces. However, previous in vitro EC-culture platforms are inherent with extraneous mechanical components, which may saturate or insufficiently activate the shared signaling pathways and accordingly, may misguide EC mechanobiological responses being investigated. Here, a more physiologically relevant model artery is reported that accurately reproduces most of the mechanical forces found in vivo, which can be individually varied in any combination to pathological levels to achieve diseased states. Arterial geometries of normal and diseased states are also realized. By mimicking mechanical microenvironments of early-stage atherosclerosis, it is demonstrated that the elevated levels of the different types of stress experienced by ECs strongly correlate with the disruption of barrier integrity, suggesting that boundaries of an initial lesion could be sites for efficient disease progression.
A polydimethylsiloxane (PDMS) film with its surface being oxidized by a plasma treatment or a UV-ozone (UVO) treatment, that is, a bilayer made of PDMS and its oxidized surface layer, is known to roll into a cylindrical structure upon exposure to the chloroform vapor due to the mismatch in the swelling ratio between PDMS and the oxidized layer by the chloroform vapor. Here we analyzed the formation of the rolled bilayer with the mechanical aspects: how the mismatch in the swelling ratio of the bilayer induces rolling of the bilayer, why any form of trigger that breaks the symmetry in the in-plane stress level is needed to roll the bilayer uniaxially, why the rolled bilayer does not unroll in the dry state when there is no more mismatch in the swelling ratio, and how the measured curvature of rolled bilayer matches well with the prediction by the theory. Moreover, for the use of the rolled bilayer as the channel of the microfluidic device, we examined whether the rolled bilayer deforms or unrolls by the flow of the aqueous solution that exerts the circumferential stress on the rolled bilayer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.