Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation-lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)-and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y.T he history of life is often portrayed as an ongoing series of evolutionary bursts, with each representing the origin and diversification of unique life forms with different and ecologically significant adaptations. Although the radiations of some groups, such as cichlid fishes of the lakes of East Africa or Darwin's finches, are well documented (1), the big radiations that account for most of the diversity of life on Earth have been more challenging to explore. To understand these radiations, we must resolve the relationships among major taxa, date the origin of these lineages (many of them ancient), and then explicitly consider whether the diversification events are really pulse-like adaptive radiations or, more simply, the result of nonadaptive, or even random, neutral processes.Although the paradigm of adaptive radiation has been applied to every level of biological classification, the large-scale macroevolutionary pattern expected from ancient repeated episodes of adaptive radiation is unclear. It has been predicted that at this scale, ecologically driven diversification may result in (i) significant variation in clade size, uncorrelated to the age of the clade (2), and (ii) shifts in average diversification rate coincident with major shifts in morphology, life history, or ecology (3). Another macroevolutionary prediction of repeated adaptive radiation is the widespre...
Self-actuating materials capable of transforming between three-dimensional shapes have applications in areas as diverse as biomedicine, robotics, and tunable micro-optics. We introduce a method of photopatterning polymer films that yields temperature-responsive gel sheets that can transform between a flat state and a prescribed three-dimensional shape. Our approach is based on poly(N-isopropylacrylamide) copolymers containing pendent benzophenone units that allow cross-linking to be tuned by irradiation dose. We describe a simple method of halftone gel lithography using only two photomasks, wherein highly cross-linked dots embedded in a lightly cross-linked matrix provide access to nearly continuous, and fully two-dimensional, patterns of swelling. This method is used to fabricate surfaces with constant Gaussian curvature (spherical caps, saddles, and cones) or zero mean curvature (Enneper's surfaces), as well as more complex and nearly closed shapes.
Surfaces with physicochemical properties that can be modulated using external stimuli offer great promise for designing responsive or adaptive materials. Here, we describe biocompatible dynamic scaffolds based on thin hydrogel coatings that reversibly hide and display surface chemical patterns in response to temperature changes. At room temperature, the gel absorbs water, triggering an elastic creasing instability that sequesters functionalized regions within tight folds in the surface. Deswelling at approximately 37 degrees C causes the gel surface to unfold, thereby regenerating the biomolecular patterns. Crease positions are directed by topographic features on the underlying substrate, and are translated into two-dimensional micrometre-scale surface chemical patterns through selective deposition of biochemically functionalized polyelectrolytes. We demonstrate specific applications of these dynamic scaffolds--selective capture, sequestration and release of micrometre-sized beads, tunable activity of surface-immobilized enzymes and reversible encapsulation of adherent cells--which offer promise for incorporation within lab-on-a-chip devices or as dynamic substrates for cellular biology.
The process by which spatial variations in growth transform twodimensional elastic membranes into three-dimensional shapes is both a fundamentally interesting mechanism of shape selection and a powerful tool for the preparation of responsive materials. From the perspective of lithographic patterning of thin gel sheets, it is most straightforward to prepare materials consisting of discrete regions with different degrees of swelling. However, the sharp variations in swelling at the boundaries between such regions make it impossible for the sheet to adopt a configuration that is free of in-plane stresses everywhere. Thus, the deformation of such materials is not well understood. Here, we consider the geometrically simple case of a photo-crosslinkable poly(N-isopropylacrylamide) copolymer patterned into thin rectangular strips divided into one high-and one low-swelling region. When swelled in an aqueous medium at 22 C, the sheet rolls into a three-dimensional shape consisting of two nearly cylindrical regions connected by a transitional neck. Heating to 50 C leads to fully reversible de-swelling back to a flat configuration. We propose a scaling argument based on a balance between stretching and bending energies that relates the curvature of the 3D shape to the width and thickness of the strip, find good agreement with experimental data and numerical simulations, and further demonstrate how this simple geometry provides a powerful route for the fabrication of self-folding stimuli-responsive micro-devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.