Creating fake images and videos such as "Deepfake" has become much easier these days due to the advancement in Generative Adversarial Networks (GANs). Moreover, recent research such as the few-shot learning can create highly realistic personalized fake images with only a few images. Therefore, the threat of Deepfake to be used for a variety of malicious intents such as propagating fake images and videos becomes prevalent. And detecting these machine-generated fake images has been quite challenging than ever. In this work, we propose a light-weight robust fine-tuning neural network-based classifier architecture called Fake Detection Fine-tuning Network (FDFtNet), which is capable of detecting many of the new fake face image generation models, and can be easily combined with existing image classification networks and finetuned on a few datasets. In contrast to many existing methods, our approach aims to reuse popular pre-trained models with only a few images for fine-tuning to effectively detect fake images. The core of our approach is to introduce an image-based self-attention module called Fine-Tune Transformer that uses only the attention module and the down-sampling layer. This module is added to the pre-trained model and fine-tuned on a few data to search for new sets of feature space to detect fake images. We experiment with our FDFtNet on the GANsbased dataset (Progressive Growing GAN) and Deepfake-based dataset (Deepfake and Face2Face) with a small input image resolution of 64×64 that complicates detection. Our FDFtNet achieves an overall accuracy of 90.29% in detecting fake images generated from the GANs-based dataset, outperforming the state-of-the-art.
Generally, object detection on Synthetic-Aperture Radar (SAR) images is known to be more challenging than that in Electro-Optical (EO) satellite images because SAR images have non-negligible speckle noise and require extensive data pre-processing. Nevertheless, object detection in SAR images is important, as SAR imagery can be obtained under severe weather and time conditions. While many recent object detection approaches on SAR imagery focus on improving detection accuracy, few studies focus on improving processing efficiency. In fact, there are significant challenges and trade-offs to achieve both high accuracy and efficiency at the same time. In this work, we introduce SAROD, a novel efficient end-to-end object detection framework on SAR images based on Reinforcement Learning (RL) to balance the tradeoffs. Our proposed model consists of two detectors, coarse and fine-grained detectors, with an RL agent, where RL has not yet been utilized for object detection on SAR imagery. Our model was evaluated on a challenging SAR imagery dataset, achieving performance comparable to state-of-the-art detectors while maintaining high efficiency of source data usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.