The intensity ratio between two major Raman bands in graphene is one of the most important information for physics of graphene and has been believed to represent various intrinsic properties of graphene without critical assessment of extrinsic effects. We report a micro Raman spectroscopy study on the Raman intensity ratio of the 2D band to the G Raman band of graphene varying the thickness of dielectric layers (SiO 2 ) underneath it. The ratio is shown to change by almost 370% when the thickness is varied by 60%. The large variation in the ratio is well explained by theoretical calculations considering multiple Raman scattering events at the interfaces. Our analysis shows that the interference effect is critical in extracting the intrinsic 2D to G intensity ratio and therefore must be taken into account in extracting various physical properties of graphene from Raman measurements.
Spatially resolved and polarized micro-Raman spectroscopy on microcrystalline graphene shows strong polarization dependences of double-resonance Raman intensities. The Raman intensity of the double-resonant 2D band is maximum when the excitation and detection polarizations are parallel and minimum when they are orthogonal, whereas that of the G band is isotropic. A calculation shows that this strong polarization dependence is a direct consequence of inhomogeneous optical absorption and emission mediated by electron-phonon interactions involved in the second-order Stokes-Stokes Raman scattering process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.