Microarray technology generates a large amount of data. Clustering is a popular technique for locating genes that are expressed in close proximity. It entails examining a fresh dataset to determine whether similar traits can be used to identify any hidden groupings. There are large-dimensional datasets accessible, such as those produced from gene expression investigations, RNA microarray studies, or RNA sequencing studies. As a consequence, cluster analysis and producing well-separated clusters become more challenging. Good cluster separation is desirable since it suggests that items are not being placed in the erroneous clusters. In this study, it was recommended that a Differential Evolution-based (DE) Model be used to interpret the analysis of Brest cancer gene expression. To begin, cluster the gene expression data to find the genes most likely to be impacted by the illness. The appropriate number of clusters must be found in order to locate the gene with the highest effect in the gene collection. We used a DE model on the Brest cancer datasets in this work. We identified the best number of clusters by using the most impacted gene in this dataset as a benchmark. We then experimented with different cluster sizes. We used the DE method to three distinct breast cancer datasets and compared it to the current K-Means and K-medoids models. The results of the experiments show that the proposed DE model outperforms existing models significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.