The clinical use of bioactive molecules in bone regeneration has been known to have side effects, which result from uncontrolled and supraphysiological doses. In this study, we demonstrated the synergistic effect of two bioactive molecules, bone morphogenic protein-2 (BMP-2) and alendronate (ALN), by releasing them in a sequential manner. Collagen-hydroxyapatite composite scaffolds functionalized using BMP-2 are loaded with biodegradable microspheres where ALN is encapsulated. The results indicate an initial release of BMP-2 for a few days, followed by the sequential release of ALN after two weeks. The composite scaffolds significantly increase osteogenic activity owing to the synergistic effect of BMP-2 and ALN. Enhanced bone regeneration was identified at eight weeks post-implantation in the rat 8-mm critical-sized defect. Our findings suggest that the sequential delivery of BMP-2 and ALN from the scaffolds results in a synergistic effect on bone regeneration, which is unprecedented. Therefore, such a system exhibits potential for the application of cell-free tissue engineering.
Graphene-based electronic textile (e-textile) gas sensors have been developed for detecting hazardous NO 2 gas. For the e-textile gas sensor, electrical conductivity is a critical factor because it directly affects its sensitivity. To obtain a highly conductive e-textile, biomolecules have been used for gluing the graphene to the textile surface, though there remain areas to improve, such as poor conductivity and flexibility. Herein, we have developed a dopamine−graphene hybrid electronic textile yarn (DGY) where the dopamine is used as a bio-inspired adhesive to attach graphene to the surface of yarns. The DGY shows improved electrical conductivity (∼40 times) compared to conventional graphene-based e-textile yarns with no glue. Moreover, it exhibited improved sensing performance in terms of short response time (∼2 min), high sensitivity (0.02 μA/ppm), and selectivity toward NO 2 . The mechanical flexibility and durability of the DGY were examined through a 1000-cycle bending test. For a practical application, the DGY was attempted to detect the NO x emitted from vehicles, including gasoline, diesel, and fuel cell electric vehicles. Our results demonstrated that the DGYsas a graphene-based etextile gas sensor for detecting NO 2 are simple to fabricate, cheap, disposable, and mechanically stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.