Minimal PE is a commonly encountered clinical concern in staging NSCLCs. Its presence is an important prognostic factor of worse survival, especially in early-stage disease.
Irritable bowel syndrome (IBS) is the most prevalent disorder of brain-gut interactions that affects between 5 and 10% of the general population worldwide. The current symptom criteria restrict the diagnosis to recurrent abdominal pain associated with altered bowel habits, but the majority of patients also report non-painful abdominal discomfort, associated psychiatric conditions (anxiety and depression), as well as other visceral and somatic pain-related symptoms. For decades, IBS was considered an intestinal motility disorder, and more recently a gut disorder. However, based on an extensive body of reported information about central, peripheral mechanisms and genetic factors involved in the pathophysiology of IBS symptoms, a comprehensive disease model of brain-gut-microbiome interactions has emerged, which can explain altered bowel habits, chronic abdominal pain, and psychiatric comorbidities. In this review, we will first describe novel insights into several key components of brain-gut microbiome interactions, starting with reported alterations in the gut connectome and enteric nervous system, and a list of distinct functional and structural brain signatures, and comparing them to the proposed brain alterations in anxiety disorders. We will then point out the emerging correlations between the brain networks with the genomic, gastrointestinal, immune, and gut microbiome-related parameters. We will incorporate this new information into a systems-based disease model of IBS. Finally, we will discuss the implications of such a model for the improved understanding of the disorder and the development of more effective treatment approaches in the future.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Somatization, defined as the presence of multiple somatic symptoms, frequently occurs in irritable bowel syndrome (IBS) and may constitute the clinical manifestation of a neurobiological sensitization process. Brain imaging data was acquired with T1 weighted 3 tesla MRI, and gray matter morphometry were analyzed using FreeSurfer. We investigated differences in networks of structural covariance, based on graph analysis, between regional gray matter volumes in IBS-related brain regions between IBS patients with high and low somatization levels, and compared them to healthy controls (HCs). When comparing IBS low somatization (N = 31), IBS high somatization (N = 35), and HCs (N = 31), we found: (1) higher centrality and neighbourhood connectivity of prefrontal cortex subregions in IBS high somatization compared to healthy controls; (2) higher centrality of left cerebellum in IBS low somatization compared to both IBS high somatization and healthy controls; (3) higher centrality of the anterior insula in healthy controls compared to both IBS groups, and in IBS low compared to IBS high somatization. The altered structural covariance of prefrontal cortex and anterior insula in IBS high somatization implicates that prefrontal processes may be more important than insular in the neurobiological sensitization process associated with IBS high somatization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.