The authors estimated human-equivalent internal radiation dose of 124I-MIBG using preclinical imaging data. As a reference, the effective dose estimation showed that 124I-MIBG would deliver less radiation dose than 124I-NaI, a radiotracer already being used in patients with thyroid cancer.
Background: Breast arterial calcification (BAC), a common incidental finding in mammography, has been shown to be associated with angiographic coronary artery disease and cardiovascular disease (CVD) outcomes. We aimed to (1) examine the association of BAC presence and quantity with hard atherosclerotic CVD (ASCVD) and global CVD; (2) ascertain model calibration, discrimination and reclassification of ASCVD risk; (3) assess the joint effect of BAC presence and 10-year pooled cohorts equations risk on ASCVD. Methods: A cohort study of 5059 women aged 60-79 years recruited after attending mammography screening between October 2012 and February 2015 was conducted in a large health plan in Northern California, United States. BAC status (presence versus absence) and quantity (calcium mass mg) was determined using digital mammograms. Prespecified end points were incident hard ASCVD and a composite of global CVD. Results: Twenty-six percent of women had BAC >0 mg. After a mean (SD) follow-up of 6.5 (1.6) years, we ascertained 155 (3.0%) ASCVD events and 427 (8.4%) global CVD events. In Cox regression adjusted for traditional CVD risk factors, BAC presence was associated with a 1.51 (95% CI, 1.08–2.11; P =0.02) increased hazard of ASCVD and a 1.23 (95% CI, 1.002–1.52; P =0.04) increased hazard of global CVD. While there was no evidence of dose-response association with ASCVD, a threshold effect was found for global CVD at very high BAC burden (95th percentile when BAC present). BAC status provided additional risk stratification of the pooled cohorts equations risk. We noted improvements in model calibration and reclassification of ASCVD: the overall net reclassification improvement was 0.12 (95% CI, 0.03–0.14; P =0.01) and the bias-corrected clinical-net reclassification improvement was 0.11 (95% CI, 0.01–0.22; P =0.04) after adding BAC status. Conclusions: Our results indicate that BAC has potential utility for primary CVD prevention and, therefore, support the notion that BAC ought to be considered a risk-enhancing factor for ASCVD among postmenopausal women.
The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique offers an accurate and efficient way to calibrate the energy response of a photon-counting detector.
Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg/ml iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg/ml) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using filtered-back-projection (FBP) technique and TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the tasked-based modulation transfer function (MTF). Both simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from FBP reconstruction for low contrast target. For high contrast target, TFIR was substantially superior to FBP reconstruction in term of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6 to 1.8 increase in CNR depending on the target contrast level. This study demonstrates that TFIR can reduce the required radiation dose by a factor of two-third for a CT image reconstruction compared to FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit (GPU) system and it takes approximately 10 seconds to reconstruct a single-slice CT image, which can be potentially used in a future multi-slit multi-slice (MSMS) spiral CT system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.