Novel salen-Al/triarylborane dyad complexes were prepared and characterized with their corresponding mononuclear compounds. The UV-vis and photoluminescence experiments for dyads exhibited photoinduced energy transfer from borane to the salen-Al moiety in an intramolecular manner. Theoretical calculation and fluoride titration results further supported these intramolecular energy-transfer features.
Salen-based indium triads, [{(3-tBu)2-(5-Mes2B)2-salen}In-Me] (1) and [{(3-tBu)2-(5-Mes2Bphenyl)2-salen}In-Me] (2), bearing triarylborane (TAB) units were prepared and fully characterised by NMR spectroscopy and elemental analysis. The major absorption bands of 1 and 2 appeared in the region centred at 347 nm and 374 nm, respectively, and the intense emission spectra were observed in the sky blue (λem = 491 nm for 1) and bluish-green (λem = 498 nm for 2) regions, respectively. The solvatochromism effects in various organic solvents and computational calculation results strongly suggested that these absorption and emission features are mainly attributed to intramolecular charge transfer (ICT) transitions between the salen ligand moieties and the TAB units. Furthermore, UV-vis and photoluminescence (PL) titration experiments by the addition of fluoride anions demonstrated ratiometric quenching patterns in both the absorption and emission spectra, indicating that binding of the fluoride anion to the boron centres interrupts these ICT transitions in each compound. Interestingly, both triads exhibited a gradual red-shifted response in each emission spectrum upon the addition of the fluoride anions, resulting in a dramatic colour-change to yellow. The computational calculation results of the S1 states revealed that these emission-colour change properties arise from the elevation of HOMO levels, which are mainly localised on the TAB moieties, resulting from the fluoride anion binding to the borane centres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.