Image-based computer-aided diagnosis (CAD) systems have been developed to assist doctors in the diagnosis of thyroid cancer using ultrasound thyroid images. However, the performance of these systems is strongly dependent on the selection of detection and classification methods. Although there are previous researches on this topic, there is still room for enhancement of the classification accuracy of the existing methods. To address this issue, we propose an artificial intelligence-based method for enhancing the performance of the thyroid nodule classification system. Thus, we extract image features from ultrasound thyroid images in two domains: spatial domain based on deep learning, and frequency domain based on Fast Fourier transform (FFT). Using the extracted features, we perform a cascade classifier scheme for classifying the input thyroid images into either benign (negative) or malign (positive) cases. Through expensive experiments using a public dataset, the thyroid digital image database (TDID) dataset, we show that our proposed method outperforms the state-of-the-art methods and produces up-to-date classification results for the thyroid nodule classification problem.
Currently, the coronavirus disease 2019 (COVID19) pandemic has killed more than one million people worldwide. In the present outbreak, radiological imaging modalities such as computed tomography (CT) and X-rays are being used to diagnose this disease, particularly in the early stage. However, the assessment of radiographic images includes a subjective evaluation that is time-consuming and requires substantial clinical skills. Nevertheless, the recent evolution in artificial intelligence (AI) has further strengthened the ability of computer-aided diagnosis tools and supported medical professionals in making effective diagnostic decisions. Therefore, in this study, the strength of various AI algorithms was analyzed to diagnose COVID19 infection from large-scale radiographic datasets. Based on this analysis, a light-weighted deep network is proposed, which is the first ensemble design (based on MobileNet, ShuffleNet, and FCNet) in medical domain (particularly for COVID19 diagnosis) that encompasses the reduced number of trainable parameters (a total of 3.16 million parameters) and outperforms the various existing models. Moreover, the addition of a multilevel activation visualization layer in the proposed network further visualizes the lesion patterns as multilevel class activation maps (ML-CAMs) along with the diagnostic result (either COVID19 positive or negative). Such additional output as ML-CAMs provides a visual insight of the computer decision and may assist radiologists in validating it, particularly in uncertain situations Additionally, a novel hierarchical training procedure was adopted to perform the training of the proposed network. It proceeds the network training by the adaptive number of epochs based on the validation dataset rather than using the fixed number of epochs. The quantitative results show the better performance of the proposed training method over the conventional end-to-end training procedure. A large collection of CT-scan and X-ray datasets (based on six publicly available datasets) was used to evaluate the performance of the proposed model and other baseline methods. The experimental results of the proposed network exhibit a promising performance in terms of diagnostic decision. An average F1 score (F1) of 94.60% and 95.94% and area under the curve (AUC) of 97.50% and 97.99% are achieved for the CT-scan and X-ray datasets, respectively. Finally, the detailed comparative analysis reveals that the proposed model outperforms the various state-of-the-art methods in terms of both quantitative and computational performance.
A paradigm shift is required to prevent the increasing automobile accident deaths that are mostly due to the inattentive behavior of drivers. Knowledge of gaze region can provide valuable information regarding a driver’s point of attention. Accurate and inexpensive gaze classification systems in cars can improve safe driving. However, monitoring real-time driving behaviors and conditions presents some challenges: dizziness due to long drives, extreme lighting variations, glasses reflections, and occlusions. Past studies on gaze detection in cars have been chiefly based on head movements. The margin of error in gaze detection increases when drivers gaze at objects by moving their eyes without moving their heads. To solve this problem, a pupil center corneal reflection (PCCR)-based method has been considered. However, the error of accurately detecting the pupil center and corneal reflection center is increased in a car environment due to various environment light changes, reflections on glasses surface, and motion and optical blurring of captured eye image. In addition, existing PCCR-based methods require initial user calibration, which is difficult to perform in a car environment. To address this issue, we propose a deep learning-based gaze detection method using a near-infrared (NIR) camera sensor considering driver head and eye movement that does not require any initial user calibration. The proposed system is evaluated on our self-constructed database as well as on open Columbia gaze dataset (CAVE-DB). The proposed method demonstrated greater accuracy than the previous gaze classification methods.
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.