We developed retroreflective Janus microparticles (RJPs) as a novel optical immunosensing probe for use in a nonspectroscopic retroreflection-based immunoassay. By coating the metals on the hemispherical surface of silica particles, highly reflective RJPs were fabricated. On the basis of the retroreflection principle, the RJPs responded to polychromatic white light sources, in contrast to conventional optical probes, which require specific monochromatic light. The retroreflection signals from RJPs were distinctively recognized as shining dots, which can be intuitively counted using a digital camera setup. Using the developed retroreflective immunosensing system, cardiac troponin I, a specific biomarker of acute myocardial infarction, was detected with high sensitivity. On the basis of the demonstrated features of the retroreflective immunosensing platform, we expect that our approach may be applied for various point-of-care-testing applications.
Studies on the interaction of cells with single-walled carbon nanotubes (SWCNTs) have been receiving increasing attention owing to their potential for various cellular applications. In this report, we investigated the interactions between biological cells and nanostructured SWCNTs films and focused on how morphological structures of SWCNT films affected cellular behavior such as cell proliferation and differentiation. One directionally aligned SWCNT Langmuir-Blodgett (LB) film and random network SWCNT film were fabricated by LB and vacuum filteration methods, respectively. We demonstrate that our SWCNT LB and network film based scaffolds do not show any cytotoxicity, while on the other hand, these scaffolds promote differentiation property of rat mesenchymal stem cells (rMSCs) when compared with that on conventional tissue culture polystyrene substrates. Especially, the SWCNT network film with average thickness and roughness values of 95 ± 5 and 9.81 nm, respectively, demonstrated faster growth rate and higher cell thickness for rMSCs. These results suggest that systematic manipulation of the thickness, roughness, and directional alignment of SWCNT films would provide the convenient strategy for controlling the growth and maintenance of the differentiation property of stem cells. The SWCNT film could be an alternative culture substrate for various stem cells, which often require close control of the growth and differentiation properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.