SUMMARYThis paper describes a hovering rotor blade design through the suitable combination of flow analysis and optimization technique. It includes a parametric study concerned with the influence of design variables and different design conditions such as objective functions and constraints on the rotor performance. Navier-Stokes analysis is employed to compute the hovering rotor performance in subsonic and transonic operating conditions. Response surface method based on D-optimal 3-level factorial design and genetic algorithm are applied to obtain the optimum solution of a defined objective function including the penalty terms of constraints. The designs of the rotor airfoil geometry and the rotor tip shape are performed in subsonic and transonic conditions, and it is observed that the new rotor blades optimized by various objective functions and constraints have better aerodynamic characteristics than the baseline rotor blade. The influence of design variables and their mutual interactions on the rotor performance is also examined through the optimization process.
This paper describes the design of a wind turbine airfoil under various operating conditions through the use of a suitable combination of flow analysis and optimization techniques. The proposed method includes a parametric study on the influence of design variables and different design conditions on airfoil performance. The incompressible Navier-Stokes equations and the k ε − turbulence model are used to compute the aerodynamic coefficients of an airfoil. The response surface method (RSM) is applied to obtain the optimum solution of the defined objective function and the penalty term of the constraint. The influence of the design variables (change in airfoil geometry) on airfoil performance as well as the accuracy of the RSM is examined from the statistical viewpoint. Various airfoil shapes with good aerodynamic performance are obtained according to various operating conditions (change in angle of attack), objective functions (minimum of drag coefficient or maximum of lift-to-drag ratio), and constraints (the lift coefficient of a designed airfoil is higher than that of a base airfoil at a certain angle of attack).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.