Recently, there has been a growing consumer interest in the amount of noise produced by household electrical appliances. The designer of the product must determine the source of the noise, in order to eliminate the source. In the case of a household electric appliance such as the washing machine, the consumer's complaint was about the noise that is generated during the dehydrating condition. However, in the case of the washing machine, it is difficult to identify the noise source when the washing machine uses the dehydrating condition. Several noise sources combine making it difficult to determine the key factor that contributes to the noise output. Multi-Dimensional Spectral Analysis (MDSA) is a method that can remove the correlation between different noise sources, and it expresses the key contributing factor as a unique output. This study utilized MDSA to analyze the contribution of each noise source in the output during the dehydrating condition.
This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the optimal design for noise reduction of the engine cooling fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Then, L 18 orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.