We incorporated extract of Glycine max Merrill (GM), which is generally known as soybean, into a layered double hydroxide (LDH) nanostructure through two different methods, ion-exchange and reconstruction. Through X-ray diffraction, field-emission scanning electron microscopy, and zeta-potential measurement, GM moiety seemed to be simply attached on the surface of LDH by ion-exchange process, while the extract could be incorporated in the inter-particle pore of LDHs by reconstruction reaction. The quantification exhibited that both incorporation method showed comparable extract loading capacity of 15.6 wt/wt% for GM-LDH hybrid prepared by ion-exchange (GML-I) and 18.6 wt/wt% for GM-LDH hybrid by reconstruction (GML-R). On the other hand, bioactive substance in both GM-LDH hybrids, revealed that GML-R has higher daidzein content (0.0286 wt/wt%) compared with GML-I (0.0108 wt/wt%). According to time-dependent daidzein release, we confirmed that GML-R showed pH dependent daidzein release; a higher amount of daidzein was released in pH 4.5 physiological condition than in pH 7.4, suggesting the drug delivery potential of GML-R. Furthermore, alkaline phosphatase activity and collagen fiber formation on human osteoblast-like MG-63 cells displayed that GML-R had superior possibility of osteoblast differentiation than GML-I. From these results, we concluded that reconstruction method was more effective for extract incorporation than ion-exchange reaction, due to its pH dependent release property and alkaline phosphatase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.