Three novel carbazole-based molecules have been synthesized and successfully applied as hole-transporting materials (HTMs) of CH3NH3PbI3-based perovskite solar cells. In particular, the perovskite cell with SGT-405, having a three-arm-type structure, exhibited a remarkable photovoltaic conversion efficiency (PCE) of 14.79%.
Novel carbazole-based hole-transporting materials (HTMs), including extended π-conjugated central core units such as 1,4-phenyl, 4,4'-biphenyl, or 1,3,5-trisphenylbenzene for promoting effective π-π stacking as well as the hexyloxy flexible group for enhancing solubility in organic solvent, have been synthesized as HTM of perovskite-sensitized solar cells. A HTM with 1,3,5-trisphenylbenzene core, coded as SGT-411, exhibited the highest charge conductivity caused by its intrinsic property to form crystallized structure. The perovskite-sensitized solar cells with SGT-411 exhibited the highest PCE of 13.00%, which is 94% of that of the device derived from spiro-OMeTAD (13.76%). Time-resolved photoluminescence spectra indicate that SGT-411 shows the shortest decay time constant, which is in agreement with the trends of conductivity data, indicating it having fastest charge regeneration. In this regard, a carbazole-based HTM with star-shaped chemical structure is considered to be a promising candidate HTM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.