Many networks are dynamic in that their topology changes rapidly--on the same time scale as the communications of interest between network nodes. Examples are the human contact networks involved in the transmission of disease, ad hoc radio networks between moving vehicles, and the transactions between principals in a market. While we have good models of static networks, so far these have been lacking for the dynamic case. In this paper we present a simple but powerful model, the time-ordered graph, which reduces a dynamic network to a static network with directed flows. This enables us to extend network properties such as vertex degree, closeness, and betweenness centrality metrics in a very natural way to the dynamic case. We then demonstrate how our model applies to a number of interesting edge cases, such as where the network connectivity depends on a small number of highly mobile vertices or edges, and show that our centrality definition allows us to track the evolution of connectivity. Finally we apply our model and techniques to two real-world dynamic graphs of human contact networks and then discuss the implication of temporal centrality metrics in the real world.
Extensive use of unmanned aerial vehicles (commonly referred to as a “drone”) has posed security and safety challenges. To mitigate security threats caused by flights of unauthorized drones, we present a framework called SENTINEL (Secure and Efficient autheNTIcation for uNmanned aErial vehicLes) under the Internet of Drones (IoD) infrastructure. SENTINEL is specifically designed to minimize the computational and traffic overheads caused by certificate exchanges and asymmetric cryptography computations that are typically required for authentication protocols. SENTINEL initially generates a flight session key for a drone having a flight plan and registers the flight session key and its flight plan into a centralized database that can be accessed by ground stations. The registered flight session key is then used as the message authentication code key to authenticate the drone by any ground station while the drone is flying. To demonstrate the feasibility of the proposed scheme, we implemented a prototype of SENTINEL with ECDSA, PBKDF2 and HMAC-SHA256. The experiment results demonstrated that the average execution time of the authentication protocol in SENTINEL was about 3.1 times faster than the “TLS for IoT” protocol. We also formally proved the security of SENTINEL using ProVerif that is an automatic cryptographic protocol verifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.