Extensive use of unmanned aerial vehicles (commonly referred to as a “drone”) has posed security and safety challenges. To mitigate security threats caused by flights of unauthorized drones, we present a framework called SENTINEL (Secure and Efficient autheNTIcation for uNmanned aErial vehicLes) under the Internet of Drones (IoD) infrastructure. SENTINEL is specifically designed to minimize the computational and traffic overheads caused by certificate exchanges and asymmetric cryptography computations that are typically required for authentication protocols. SENTINEL initially generates a flight session key for a drone having a flight plan and registers the flight session key and its flight plan into a centralized database that can be accessed by ground stations. The registered flight session key is then used as the message authentication code key to authenticate the drone by any ground station while the drone is flying. To demonstrate the feasibility of the proposed scheme, we implemented a prototype of SENTINEL with ECDSA, PBKDF2 and HMAC-SHA256. The experiment results demonstrated that the average execution time of the authentication protocol in SENTINEL was about 3.1 times faster than the “TLS for IoT” protocol. We also formally proved the security of SENTINEL using ProVerif that is an automatic cryptographic protocol verifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.