Here, we describe three new species of Inosperma from Tropical Africa: Inosperma africanum, I. bulbomarginatum and I. flavobrunneum. Morphological and molecular data show that these species have not been described before, hence need to be described as new. The phylogenetic placements of these species were inferred, based on molecular evidence from sequences of 28S and RPB2. Additional analysis using ITS dataset shows interspecific variation between each species. Phylogenetic analyses resolve I. flavobrunneum in Old World Tropical clade 1 with weak support, I. bulbomarginatum is sister of Old World Tropical clade 1 and I. africanum is indicated as sister to the rest of Inosperma. Complete description and illustrations, including photographs and line drawings, are presented for each species. A new combination of Inocybe shawarensis into Inosperma is also proposed.
The Guineo-Sudanian and Sudanian zones are home to predominantly ectomycorrhizal (EcM) plant communities dominated by members of the families Fabaceae (subfamily Ceasalpinioidae), Phyllanthaceae and Dipterocarpaceae. Numerous studies have shown that the aggregation of EcM trees is facilitated in part by the shared mycelial networks of EcM fungi. Mycelial networks involving mature trees would thus directly affect the survival of the seedlings of EcM trees and, thereby, the spatial structuring of the trees. In this study, we investigated the structure and spatial interactions of three vegetation types dominated by different EcM trees, namely, Isoberlinia doka, I. tomentosa and Uapaca togoensis. Three 50 m × 50 m plots were installed for each vegetation type. All EcM trees present in each plot were counted for estimation of density. Ripley's second order function K was used to estimate the spatial structure of EcMs trees. Spatial distribution of trees differed between species. Repulsion occurred at scales of 1 to 5 m between the different EcM trees species. By sharing nutrient through mycelial network, repulsion mechanisms observed during interaction between plants should have been cancelled but this was not observed in this study.
The family Inocybaceae has been poorly studied in Africa. Here we describe the first species of the genus Mallocybe from West African and Zambian woodlands dominated by ectomycorrhizal trees of Fabaceae and Phyllanthaceae. The new species M. africana is characterized by orange-brown fruitbodies, a fibrillose pileus, a stipe tapered towards the base and large ellipsoid basidiospores. It resembles many north and south temperate species of Mallocybe but is most closely related to the southeast Asian tropical species, M. errata. M. africana is widely distributed in West Africa (Benin, Togo, Burkina Faso and Ivory Coast) extending to South-eastern Africa in Zambia. Phylogenetic analyses based on 5.8S rDNA, nLSU and RPB2 sequence data confirm that M. africana is nested within Mallocybe. A complete morphological description and illustrations, including photographs and line drawings, are presented.
We describe four new nodulose-spored species of Inocybe from tropical regions of Africa: I. beninensis, I. flavipes, I. fuscobrunnea and I. pallidiangulata. The new species are recognised based on morphological data and phylogenetic analyses of ITS, 28S and RPB2 sequences. Phylogenetic analyses indicated that I. flavipes and I. beninensis are part of a subclade leading to the I. calida group. Inocybe fuscobrunnea appears sister to the I. asterospora group. Inocybe pallidiangulata is nested within a clade of mainly tropical species from South Asia, Africa, and South America, close to the subclade of I. lilacinosquamosa and I. ayangannae from Guyana. Complete descriptions and illustrations, including photographs and line drawings, and a key to nodulose-spored taxa of tropical African species of Inocybe are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.