This study investigated the effects of magnesium ion (Mg) incorporation into the surface of deproteinized porcine cancellous bone in the bone healing of rabbit calvarial defects with the expectation of utilizing the integrin-ligand binding enhancement effect of Mg, and compared its bone healing capacity with that of untreated porcine cancellous bone and deproteinized bovine bone (Bio-Oss). Hydrothermal treatment was performed to produce Mg-incorporated porcine bone using an alkaline Mg-containing solution. The surface morphology and chemical composition of the samples were investigated using scanning electron microscopy, energy-dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Defects 7 mm in diameter were created in the calvaria of 14 adult male New Zealand White rabbits and were filled with (1) untreated porcine bone (PB), (2) Bio-Oss, and (3) Mg-containing porcine bone (MG). The percentage of newly formed bone (NB%) was evaluated histomorphometrically at 2 and 4 weeks after implantation. Hydrothermal treatment resulted in a Mg-containing surface in porcine bone covered with nanostructures ~100 nm in size. The MG group supported better new bone formation compared with the other groups. Osteoconductive new bone formation was observed in the central defect area in the MG group at an early healing time-point. Histomorphometric analysis revealed significantly greater NB% in the MG group when compared with the untreated PB and Bio-Oss groups at 4 weeks (p < 0.05). The Mg-incorporated porcine bone with surface nanostructures achieved rapid new bone formation in the osseous defects of rabbit calvaria compared with untreated xenografts of porcine and bovine origin.
PurposeThe purpose of this study was to evaluate the clinical effectiveness of and patient's satisfaction with treatment of gingival melanin hyperpigmentation with a Nd:YAG laser and a high speed rotary instrument.MethodsThree patients with melanin hyperpigmentation in the anterior parts of the gingiva were chosen for this case study. Clinical photographs were taken at the preoperative state and three patients were treated under local anesthesia. In the maxilla, the gingival deepithelization was conducted with a high speed diamond bur, whereas, in the mandible with a Nd:YAG laser. Clinical photographs were taken immediately after the procedures and at the 1st, 2nd, and 4th week to evaluate clinical color changes. A week after the procedure, the patients filled out a questionnaire about any pain or discomfort. At the 4th week after the procedure, the patients filled out questionnaires about esthetic aspects of the results of treatment.ResultsIn all cases, both anterior gingival areas were depigmented with satisfaction and the patients did not complain of severe pain or discomfort. At the 1st week of healing, the gingiva showed moderate to fast epithelization. Two weeks after the procedure, clinically, the gingiva showed almost complete healing. Four weeks after the procedure, there was significant improvement in gingival melanin hyperpigmentation.ConclusionsThe Nd:YAG laser and the high speed rotary instruments seem to be effective for the esthetic treatment of gingival melanin hyperpigmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.