BACKGROUND/OBJECTIVESObesity is a global health problem of significant importance which increases mortality. In place of anti-obesity drugs, natural products are being developed as alternative therapeutic materials. In this study, we investigated the effect of Brassica juncea L. leaf extract (BLE) on fat deposition and lipid profiles in high-fat, high-cholesterol diet (HFC)-induced obese rats.MATERIALS/METHODSMale Sprague-Dawley rats were divided into four groups (n = 8 per group) according to diet: normal diet group (ND), high-fat/high-cholesterol diet group (HFC), HFC with 3% BLE diet group (HFC-A1), and HFC with 5% BLE diet group (HFC-A2). Each group was fed for 6 weeks. Rat body and adipose tissue weights, serum biochemical parameters, and tissue lipid contents were determined. The expression levels of mRNA and proteins involved in lipid and cholesterol metabolism were determined by reverse transcription polymerase chain reaction and western blot analysis, respectively.RESULTSThe HFC-A2 group showed significantly lower body weight gain and food efficiency ratio than the HFC group. BLE supplementation caused mesenteric, epididymal, and total adipose tissue weights to decrease. The serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced, and high-density lipoprotein cholesterol was significantly increased in rats fed BLE. These results were related to lower glucose-6-phosphate dehydrogenase, acetyl-coA carboxylase, and fatty acid synthase mRNA expression, and to higher expression of the cholesterol 7α-hydroxylase and low density lipoprotein-receptor, as well as increased protein levels of peroxisome proliferator-activated receptor α. Histological analysis of the liver revealed decreased lipid droplets in HFC rats treated with BLE.CONCLUSIONSSupplementation of HFC with 3% or 5% BLE inhibited body fat accumulation, improved lipid profiles, and modulated lipogenesis- and cholesterol metabolism-related gene and protein expression.
Breast cancer is the most common cancer in women, and metastasis is the leading cause of death in breast cancer patients. Although chemoprevention is widely employed to treat breast cancer, anticancer drugs can cause significant adverse effects. Lysimachia christinae Hance (LH) is a traditional Chinese medicinal plant with diverse therapeutic effects. However, its potential anticancer activity has not been fully investigated in breast cancers to date. Using high‐performance liquid chromatography–mass spectrometry, we found that the main constituent of LH extract (LHE) was rutin. Our results indicated that LHE or rutin markedly decreased the proliferation and viability of estrogen receptor (ER)‐positive MCF‐7 and ER‐negative HCC38 human breast cancer cells. LHE treatment induced morphological changes in apoptotic nuclei using 4′,6‐diamidino‐2‐phenylindole (DAPI) staining. Annexin V–fluorescein isothiocyanate (FITC) propidium iodide (PI) staining assay revealed that apoptosis significantly increased in both breast cancer cell types after LHE treatment. Additionally, the expression of poly (ADP‐ribose) polymerase (PARP), Bcl‐2, and phospho‐Akt decreased, while that of cleaved PARP and p53 increased, in both cell types. Furthermore, LHE treatment inhibited epithelial–mesenchymal transition (EMT). LHE treatment significantly upregulated E‐cadherin level in MCF‐7 and HCC38 cells, while vimentin level was downregulated in HCC38 cells. In addition, transwell and wound‐healing assays revealed that LHE or rutin inhibited breast cancer cell migration. Overall, these findings demonstrate that LHE is a promising therapeutic agent that acts by promoting apoptosis and reducing cell proliferation, EMT, and cell migration in ER‐positive and ER‐negative breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.