An innovative integrated passive safety system for a research reactor is proposed in this study to improve the safety of the research reactor. This integrated system has three functions in the facility as a decay tank, siphon breaker, and long-term cooling tank. This paper also deals with the process of designing and optimizing the decay tank and the siphon breaker of the integrated passive safety system. At first, the decay tank was designed and improved step by step, while considering the computational fluid dynamics analysis results. Consequently, we could satisfy the design requirements of the decay tank. In addition, the performance of a new type of siphon breaker that was installed in the final decay tank model was tested. We designed an 18-inch diameter siphon breaker at the top of the decay tank's third section, and we could observe the breaking of the siphon that prevented the occurrence of a severe accident in the research reactor. By locating the siphon breaker at the third section of the decay tank, we could also use the coolant of the front three sections for long-term cooling of the research reactor.
In an open-pool type research reactor, the primary cooling system can be designed to have a downward flow inside the core during normal operation because of the plate type fuel geometry. There is a flow inversion inside the core from the downward flow by the inertia force of the primary coolant to the upward flow by the natural circulation when the pump is turned off. To delay the flow inversion time, an innovative passive system with pump flywheel and GCCT is developed to remove the residual heat. Before the primary cooling pump starts up, the water level of the GCCT is the same as that of the reactor pool. During the primary cooling pump operation, the water in the GCCT is moved into the reactor pool because of the pump suction head. After the pump stops, the potential head generates a downward flow inside the core by moving the water from the reactor pool to the GCCT and removes the residual heat. When the water levels of the two pools are the same again, the core flow has an inversion of the flow direction, and natural circulation is developed through the flap valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.