Glioblastoma multiforme (GBM), a particularly aggressive type of malignant brain tumor, has a high mortality rate. Bcl-w, an oncogene, is reported to enhance cell survival, proliferation, epithelial-mesenchymal transition (EMT), migratory and invasive abilities, and stemness maintenance in a variety of cancer cell types, including GBM. In this study, we confirmed that Bcl-w-induced conditional medium (CM) enhances tumorigenic phenotypes of migration, invasiveness, and stemness maintenance. Notably, platelet-derived growth factor-A (PDGF-A) expression, among other factors of the tumor environment, was increased by CM of Bcl-w-overexpressing cells, prompting investigation of the potential correlation between Bcl-w and PDGF-A and their effects on GBM malignancy. Bcl-w and PDGF-A levels were positively regulated and increased tumorigenicity by Sox2 activation in GBM cells. miR-340-5p was further identified as a direct inhibitor of Bcl-w and Sox2. Overexpression of miR-340-5p reduced mesenchymal traits, cell migration, invasion, and stemness in GBM through attenuating Bcl-w and Sox2 expression. Our novel findings highlight the potential utility of miR-340-5p as a therapeutic agent for glioblastoma multiforme through inhibitory effects on Bcl-w-induced PDGF-A and Sox2 activation.
Breast cancer is the most common female cancer in the world. Despite the active research on metastatic breast cancer, the treatment of breast cancer patients is still difficult because the mechanism is not well known. Therefore, research on new targets and mechanisms for diagnosis and treatment of breast cancer patients is required. On the other hand, microRNA (miRNA) has the advantage of simultaneously regulating the expression of many target genes, so it has been proposed as an effective biomarker for the treatment of various diseases including cancer. This study analyzed the role and mechanism of DBC2 (deleted in breast cancer 2), which is known to inhibit its expression in breast cancer, and proposed microRNA (miR)-5088-5p, which regulates its expression. It was revealed that the biogenesis of miR-5088-5p was upregulated by hypomethylation of its promoter, promoted by Fyn, and was involved in malignancy in breast cancer. With the use of the cellular level, clinical samples, and published data, we verified that the expression patterns of DBC2 and miR-5088-5p were negatively related, suggesting the potential as novel biomarkers for the diagnosis of breast cancer patients.
Bcl-w, a member of the Bcl-2 family, is highly expressed in various solid tumor, including lung cancer, suggesting that it is involved in cancer cell survival and carcinogenesis. Solid cancer-induced hypoxia has been reported to increase angiogenesis, growth factor, gene instability, invasion, and metastasis. Despite many studies on the treatment of non-small cell lung cancer (NSCLC) with a high incidence rate, the survival rate of patients has not improved because the cancer cells acquired resistance to treatment. This study investigated the correlation between Bcl-w expression and hypoxia in tumor malignancy of NSCLC. Meanwhile, microRNAs (miRNAs) are involved in a variety of key signaling mechanisms associated with hypoxia. Therefore, we discovered miR-519d-3p, which inhibits the expression of Bcl-w and hypoxia-inducing factor (HIF)-1α, and found that it reduces hypoxia-induced tumorigenesis. Spearman’s correlation analysis showed that the expression levels of miR-519d-3p and Bcl-w/HIF-1α were negatively correlated, respectively. This showed that miR-519d-3p can be used as a diagnostic biomarker and target therapy for NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.