l e t t e r sTo identify the genetic bases for nine metabolic traits, we conducted a meta-analysis combining Korean genome-wide association results from the KARE project (n = 8,842) and the HEXA shared control study (n = 3,703). We verified the associations of the loci selected from the discovery metaanalysis in the replication stage (30,395 individuals from the BioBank Japan genome-wide association study and individuals comprising the Health2 and Shanghai Jiao Tong University Diabetes cohorts). We identified ten genome-wide significant signals newly associated with traits from an overall metaanalysis. The most compelling associations involved 12q24.11 (near MYL2) and 12q24.13 (in C12orf51) for high-density lipoprotein cholesterol, 2p21 (near SIX2-SIX3) for fasting plasma glucose, 19q13.33 (in RPS11) and 6q22.33 (in RSPO3) for renal traits, and 12q24.11 (near MYL2), 12q24.13 (in C12orf51 and near OAS1), 4q31.22 (in ZNF827) and 7q11.23 (near TBL2-BCL7B) for hepatic traits. These findings highlight previously unknown biological pathways for metabolic traits investigated in this study.
Macroautophagy/autophagy is a lysosome-dependent catabolic process for the turnover of proteins and organelles in eukaryotes. Autophagy plays an important role in immunity and inflammation, as well as metabolism and cell survival. Diverse immune and inflammatory signals induce autophagy in macrophages through pattern recognition receptors, such as toll-like receptors (TLRs). However, the physiological role of autophagy and its signaling mechanisms in microglia remain poorly understood. Microglia are phagocytic immune cells that are resident in the central nervous system and share many characteristics with macrophages. Here, we show that autophagic flux and expression of autophagy-related (Atg) genes in microglia are significantly suppressed upon TLR4 activation by lipopolysaccharide (LPS), in contrast to their stimulation by LPS in macrophages. Metabolomics analysis of the levels of phosphatidylinositol (PtdIns) and its 3-phosphorylated form, PtdIns3P, in combination with bioinformatics prediction, revealed an LPS-induced reduction in the synthesis of PtdIns and PtdIns3P in microglia but not macrophages. Interestingly, inhibition of PI3K, but not MTOR or MAPK1/3, restored autophagic flux with concomitant dephosphorylation and nuclear translocation of FOXO3. A constitutively active form of FOXO3 also induced autophagy, suggesting FOXO3 as a downstream target of the PI3K pathway for autophagy inhibition. LPS treatment impaired phagocytic capacity of microglia, including MAP1LC3B/LC3-associated phagocytosis (LAP) and amyloid β (Aβ) clearance. PI3K inhibition restored LAP and degradation capacity of microglia against Aβ. These findings suggest a unique mechanism for the regulation of microglial autophagy and point to the PI3K-FOXO3 pathway as a potential therapeutic target to regulate microglial function in brain disorders.
ObjectiveFebrile seizures are the most common form of childhood seizures. Fever is induced by pro-inflammatory cytokines during infection, and pro-inflammatory cytokines may trigger the development of febrile seizures. In order to determine whether active inflammation, including high mobility group box-1 (HMGB1) and pro-inflammatory cytokines, occurs in children with febrile seizures or epilepsy, we analyzed cytokine profiles of patients with febrile seizures or epilepsy.MethodsForty-one febrile seizure patients who visited the emergency department of Seoul National University Boramae Hospital from June 2008 to May 2009 were included in this study. Blood was obtained from the febrile seizure child patients within 30 minutes of the time of the seizure; subsequently, serum cytokine assays were performed. Control samples were collected from children with febrile illness without convulsion (N = 41) and similarly analyzed. Serum samples from afebrile status epilepticus attacks in intractable epilepsy children (N = 12), afebrile seizure attacks in generalized epilepsy with febrile seizure plus (GEFSP) children (N = 6), and afebrile non-epileptic controls (N = 7) were also analyzed.ResultsSerum HMGB1 and IL-1β levels were significantly higher in febrile seizure patients than in fever only controls (p < 0.05). Serum IL-6 levels were significantly higher in typical febrile seizures than in fever only controls (p < 0.05). Serum IL-1β levels were significantly higher in status epilepticus attacks in intractable epilepsy patients than in fever only controls (p < 0.05). Serum levels of IL-1β were significantly correlated with levels of HMGB1, IL-6, and TNF-α (p < 0.05).ConclusionsHMGB1 and pro-inflammatory cytokines were significantly higher in febrile seizure children. Although it is not possible to infer causality from descriptive human studies, our data suggest that HMGB1 and the cytokine network may contribute to the generation of febrile seizures in children. There may be a potential role for anti-inflammatory therapy targeting cytokines and HMGB1 in preventing or limiting febrile seizures or subsequent epileptogenesis in the vulnerable, developing nervous system of children.
Based on the nonequilibrium Green’s function formalism, we have developed a three-dimensional (3D) simulation framework capable of handling electronic transport in nanoscale silicon devices within the effective mass and Hartree approximations. Using the deformation potential theory and the self-consistent Born approximation, we obtain the spatially local self-energy functions for the intravalley and intervalley phonon scattering mechanisms. To make the 3D simulation practicable, we reduce the computational complexity by using the mode space approach suitable for the device whose cross section is relatively uniform along the transport direction. We also obtain the expression for the phonon-limited low field mobility in the long channel limit from the linear response theory. As an application, we study the quantum transport of the silicon nanowire transistor whose channel length is 15nm in the ballistic limit and in the presence of the electron-phonon interactions. We can observe various effects of the electron-phonon interactions such as the reduction of the drain current, broadening of the local density of states, and the energy relaxation of the electrons injected from the source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.