A PARP inhibitor is a rationally designed targeted therapy for cancers with impaired DNA repair abilities. RAD51C is a paralog of RAD51 that has an important role in the DNA damage response. We found that cell lines sensitive to a novel oral PARP inhibitor, olaparib, had low levels of RAD51C expression using microarray analysis, and we therefore hypothesized that low expression of RAD51C may hamper the DNA repair process, resulting in increased sensitivity to olaparib. Compared with the cells with normal RAD51C expression levels, RAD51C-deficient cancer cells were more sensitive to olaparib, and a higher proportion underwent cell death by inducing G 2 -M cell-cycle arrest and apoptosis. The restoration of RAD51C in a sensitive cell line caused attenuation of olaparib sensitivity. In contrast, silencing of RAD51C in a resistant cell line enhanced the sensitivity to olaparib, and the number of RAD51 foci decreased with ablated RAD51C expression. We also found the expression of RAD51C was downregulated in cancer cells due to epigenetic changes and RAD51C expression was low in some gastric cancer tissues. Furthermore, olaparib significantly suppressed RAD51C-deficient tumor growth in a xenograft model. In summary, RAD51C-deficient cancer cells are highly sensitive to olaparib and offer preclinical proof-of-principle that RAD51C deficiency may be considered a biomarker for predicting the antitumor effects of olaparib. Mol Cancer Ther; 12(6); 865-77. Ó2013 AACR.
Src is a nonreceptor tyrosine kinase involved in the cross-talk and mediation of many signaling pathways that promote cell proliferation, adhesion, invasion, migration, and tumorigenesis. Increased Src activity has been reported in many types of human cancer, including gastric cancer. Therefore, this factor has been identified as a promising therapeutic target for cancer treatments, and targeting Src in gastric cancer is predicted to have potent effects. We evaluated the antitumor effect of a c-Src/Abl kinase inhibitor, saracatinib (AZD0530), alone or combined with chemotherapeutic agents in gastric cancer cell lines and a NCI-N87 xenograft model. Among 10 gastric cancer cell lines, saracatinib specifically inhibited the growth and migration/invasion of SNU216 and NCI-N87 cells. Saracatinib blocked the Src/FAK, HER family, and oncogenic signaling pathways, and it induced G 1 arrest and apoptosis in SNU216 and NCI-N87 cells. Apoptosis required induction of the proapoptotic BCL2 family member Bim. Knockdown of Bim using siRNA decreased apoptosis induced by treatment with saracatinib, suggesting that Bim has an important role in saracatinibinduced apoptosis. Saracatinib enhanced the effects of lapatinib, an EGFR/HER2 dual inhibitor, in SNU216 and NCI-N87 cells. Furthermore, combined treatment with saracatinib and 5-fluorouracil (5-FU) or cisplatin exerted synergistic effects in both saracatinib-sensitive and saracatinib-resistant cells. Consistent with our in vitro findings, cotreatment with saracatinib and 5-FU resulted in enhanced antitumor activity in the NCI-N87 xenografts. These data indicate that the inhibition of Src kinase activity by saracatinib alone or in combination with other agents can be a strategy to target gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.