A HPLC method was developed to assess the enhanced bioactivity of bioconverted Mori Folium (MF) extract and to apply a quality-control system. Liquid-liquid extraction was applied to observe changes in chemical composition through enzymatic bioconversion. The ethyl acetate layer was used for quality control of the anti-diabetic functional MF product. A high-performance liquid chromatography method was developed to analyze five marker compounds (syringaldehyde, trans-caffeic acid, morin 3-O-β-D-glucopyranoside, astragalin, and moracin M 3′-O-β-glucopyranoside) within 60 min. Optimized sample preparation was sonication for 44 min and a water-to-material ratio of 102.5 mL/g by response surface methodology. Comparing MF water extract, trans-caffeic acid and syringaldehyde contents were increased 1.89 times and 2.70 times at Viscozyme-bioconverted material by applying the developed method. This HPLC method can be used to control the quality of bioconverted MF based on suitable bioactive markers and also applied to develop anti-diabetic functional foods containing Mori Folium.
The fruits of Prunus mume, maesil (Rosaceae), have been widely used as a valuable source of foods and herbal medicines from ancient times in Northeast Asia. Specially, phenolic compounds of main compounds in maesil were reported to have various activities. This study aims to develop the simultaneous analytical method of nine phenolic compounds in maesil and to evaluate these compound contents in samples during the ripeness. Twenty-one species of samples and nine phenolic compounds were used for this study. In results, compounds 1–9 contents in unripe fruits were 0.16∼1.81 mg/g. However, these compounds in ripe samples were 0.09∼1.66 mg/g. Compounds 1–9 contents in ripe fruits were generally reduced rather than those in unripe fruits. Otherwise, the contents of compounds 2, 5, 8, and 9 in seed part were relatively higher than those in flesh part. In contrast, contents of compounds 1, 3, and 7 in flesh part were relatively higher than those in seed part. Generally, the contents of compounds 1–9 in unripe fruits were higher than those in ripe fruits. However, the contents of compounds 1–9 in each part (seed and fresh) of fruits were different according to species of compounds. It indicates that the selection of harvesting time and process part of fruits as the source of foods and medicines is important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.